Николай Лучник - Невидимый современник
- Название:Невидимый современник
- Автор:
- Жанр:
- Издательство:Молодая гвардия
- Год:1968
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Николай Лучник - Невидимый современник краткое содержание
Угроза здоровью людей в связи с повышением уровня естественного радиоактивного фона…
Новые методы лечения рака и других тяжелых заболеваний…
Радиационная угроза в современных войнах…
Борьба с вредными насекомыми…
Наиболее эффективные методы диагностики в медицине…
Изучение тончайших процессов обмена веществ…
Так же как некогда пар и электричество, так теперь ионизирующие лучи стали неотъемлемой частью современной техники, науки, повседневной жизни.
О радиобиологии — науке, которая занимается всеми этими проблемами, рассказывает доктор биологических наук Н. Лучник, первая книга которого — «Почему я похож на папу» — получила широкое признание читателей.
Невидимый современник - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Вряд ли может быть случайным сходство выводов, к которым пришли ученые, исследуя молекулярные изменения ДНК и хромосомные мутации. Одиночные разрывы могут проявиться только во время удвоения молекул ДНК, которое предшествует делению клетки и приходится как раз на то самое время, когда, согласно матричной гипотезе, скрытые первичные изменения переходят в мутации.
Молекулярные механизмы образования мутаций и восстановления клеток от скрытых повреждений только сейчас проясняются, но уже можно смело делать два утверждения: образование мутаций не мгновенный акт, а процесс, идущий во времени; переход первичных повреждений в наблюдаемые изменения — результат нормальных процессов клеточного цикла, проходящих с участием поврежденных хромосом. Отсюда ясно, что облучение создает лишь предпосылку для возникновения мутации. Значит, можно рассчитывать на уменьшение лучевого поражения с помощью воздействий, применяемых после облучения, иными словами — «исправлять ошибки», в то время, пока они еще не реализовались в необратимые нарушения.
Вот теперь-то мы можем, наконец, ответить на оба основных вопроса радиобиологии:
Почему ионизирующие лучи при дозах, оставляющих в облучаемых объектах совершенно ничтожную энергию, приводят к столь большим последствиям?
Почему разные клетки, разные органы, разные виды живых организмов так сильно отличаются по чувствительности к ионизирующей радиации?
Мы уже знаем, что при облучении живых организмов особенно важную роль играет повреждение генетического аппарата клетки. Ну и что? Ген — большая молекула. С точки зрения химика она ничем не хуже любой другой большой молекулы. И у нас нет никаких оснований думать, что радиация будет действовать на генные молекулы как-нибудь иначе, чем на любые другие молекулы таких же размеров. И о том же самом говорят результаты опытов. А раз так, значит, чтобы с более или менее реальной вероятностью попасть в какой-нибудь определенный ген, нужна доза порядка миллиона рентген. И действительно, попытка вызвать с помощью облучения какое-нибудь вполне определенное наследственное изменение — задача совершенно нереальная, если не использовать методов постановки опытов, при которых можно анализировать сотни тысяч или миллионы особей. На дрозофиле и то ставить такие опыты тяжело.
Но все дело в совершенно особом месте, которое занимают гены в клетках и в организмах. В нормальных клетках содержится по два экземпляра генов каждого сорта, а в зародышевых — по одному. В хромосомном наборе тысячи генов, но все они разные: один отвечает за одни свойства организма, другой — за другие. Если разрушить одну молекулу какого-нибудь фермента, совершенно необходимого для жизни клетки, она этого и не почувствует, потому что сохранились сотни или тысячи точно таких же молекул. А повредить один ген из двух — это уже существенно. Если оторвать одну ножку у сороконожки, она будет бегать с той же скоростью, что и раньше, но если прострелить одно крыло орлу, он рухнет наземь.
И самое главное: чтобы клетка перестала нормально работать, вовсе не обязательно попадать в какой-то вполне определенный ген. Для этого достаточно повредить любой ген. Вероятность изменить какой-нибудь вполне определенный ген, облучая клетку дозой в несколько сотен рентген, исчезающе мала. Но клетка содержит очень много разных генов, и поэтому вероятность изменить любой ген оказывается не такой уж маленькой величиной. Да, впрочем, мы уже знаем об этом: сравнительно невысокие дозы вызывают мутации во вполне заметном проценте клеток.

Благодаря тому, что каждый ген играет важную роль, а каждая клетка содержит очень большое число их и, самое главное, каждый ген присутствует в клетке, как правило, лишь в двух экземплярах, очень малые (с физической или химической точки зрения) дозы способны вызывать в клетке наследственные изменения. Если мутация произошла в одной из клеток тела, на свойствах организма она скорее всего не скажется. Но если она возникла в зародышевой клетке, из которой суждено развиться новому организму, то одно и то же изменение окажется во всех его клетках и весь организм будет работать ненормально, а может быть, и вообще окажется нежизнеспособным.
Но и мутации в остальных клетках не всегда безразличны для организма. Ведь некоторые из них приводят к тому, что клетка приобретает злокачественные свойства и дает начало раковой опухоли. А накопление в отдельных клетках разных мутаций, как думают, может служить причиной преждевременного старения. Во всех этих случаях из-за той роли, которую играют гены в живых организмах, мутации, то есть ничтожные изменения, молекул, усиливаются до изменения целого огромного организма. Именно поэтому энергия, которая нагреет стакан воды лишь на один градус, приводит к столь драматическим биологическим эффектам.
Живые клетки размножаются путем деления, а каждому делению предшествует удвоение числа хромосом. В дочерние клетки попадают совершенно одинаковые наборы хромосом. Процесс этот очень важный, и для его осуществления в клетке имеется тончайший прецизионный механизм. Во время деления клетки в ней образуется так называемое веретено деления. Это структура из сократимых нитей, действительно имеющая форму веретена. На определенной стадии все хромосомы, похожие в этот период на довольно короткие палочки (в результате сильной спирализации), располагаются в одной плоскости, перпендикулярной оси веретена. Каждая хромосома расщепляется вдоль. Генетический материал для обеих дочерних клеток готов. Но как правильно распределить его?
Для этого и существует веретено. В каждой хромосоме есть одна особая точка, так называемая центромера. Здесь и присоединяются тянущие нити веретена. Они сокращаются, растягивая хромосомы к двум полюсам клетки. В результате в каждую из дочерних клеток попадает нормальное число хромосом, что является необходимым условием ее существования. Отсюда ясно большое значение того факта, что у каждой хромосомы по одной и только одной центромере.
А теперь вспомним о хромосомных аберрациях. Простейший тип аберраций — фрагменты. Хромосома разваливается на два куска, и один из фрагментов (его называют ацентрическим) будет лишен центромеры. Следовательно, во время деления клетки к нему не сможет присоединиться нить веретена, и он не войдет ни в одно из формирующих ядер. Этот фрагмент обречен: довольно быстро он растворится в цитоплазме под действием ферментов. А клетка потеряет часть генетического материала, причем не один какой-нибудь ген, а большое число генов, которые были в ацентрическом фрагменте.
Читать дальшеИнтервал:
Закладка: