Джеймс Гордон - Почему мы не проваливаемся сквозь пол
- Название:Почему мы не проваливаемся сквозь пол
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джеймс Гордон - Почему мы не проваливаемся сквозь пол краткое содержание
Еще в первые десятилетия нашего века ответ на вопросы о свойствах материалов
искали в эксперименте. И лишь последние 40 лет ученые, специалисты в области
материаловедения, стали серьезно изучать строение материалов, убедившись, что
их свойства зависят от совершенства в расположении атомов. Обо всем этом живо и
с юмором рассказывает автор книги профессор университета в Рединге
(Великобритания) Джеймс Эдвард Гордон. Книга рассчитана не только на школьников
и студентов, но и на тех, кого по роду работы интересует поведение современных
материалов и прочность конструкций.
Почему мы не проваливаемся сквозь пол - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Следовательно, весьма приближенно все металлы можно считать членами одного семейства с очень схожими удельными жесткостями, удельными прочностямн и удлинениями. Конечно, это очень грубое обобщение, и уж совсем не так стоит вопрос для металловедов, которые упорно продолжают предпринимать попытки получить лучшие комбинации удельной прочности и вязкости (с удельной жесткостью ничего не поделаешь), хотя возможности их здесь довольно ограниченны. Металловеды достигли успехов в попытках сохранить прочность с повышением температуры. Во многих случаях это важнее, чем повышение прочности при комнатной температуре.
Нет нужды описывать здесь специальные металлургические процессы и различные виды обработки всех металлов и сплавов. На эту тему написано множество книг. Однако огромная социальная и техническая значимость железа и стали заставляет рассказать о них немного подробнее. Приступая к делу, я слишком хорошо отдаю себе отчет в размерах и трудностях этого предмета. Возможно перед началом я должен принести какую-то жертву Гефесту, кузнецу и оружейнику Олимпа, единственному технологу, принятому в круг главных богов.
Железо
Прочность железа и стали определяется чрезвычайно сильным влиянием углерода, содержащегося в кристалле железа, на движение дислокаций. Конечно, дислокационные явления оказались понятными лишь совсем недавно. Да что там дислокации, даже сравнительно простая химия процесса получения железа из руды была осознана к концу периода промышленной революции. Однако практическая металлургия железа была разработана и без этого, и сейчас она во многом остается традиционным процессом. Подобно тому как текстильное дело с его прядением и ткачеством уходит в доисторические времена, а вклад современных фабрик сводится к механизации и рационализации простых ручных операций, так и производство стали основано сейчас на усложненных схемах, которые сами по себе существуют с незапамятных времен. Именно поэтому процессы черной металлургии лучше всего понимаются на историческом фоне.
Величайшая трудность древних металлургов (исключая, конечно, их научное невежество) была связана с получением достаточно высокой температуры в печи. Современное металлургическое оборудование дает в руки металлурга высокую и регулируемую температуру. Это сокращает время получения металлов и сплавов, так как позволяет объединять в один процесс несколько операций. Естественно, сейчас и масштабы другие. Современная печь может дать тысячу тонн стали в день, тогда как средневековый мастер был бы доволен, получив килограммов пятьдесят металла.
Не в пример бронзе, которая может плавиться при 900-1000° C, что как раз обеспечивают обыкновенные дрова, чистое железо плавится при 1535° C, а эта температура веками лежала за пределами технических возможностей. Однако уже довольно малые добавки углерода значительно понижают температуру плавления железа, а углерод всегда под рукой - ведь для нагрева руды использовали в качестве топлива древесный уголь. Самая низкая температура плавления, достижимая на этом пути, - около 1150° C, она получается, когда 4-4,5% углерода продиффундировало (то есть просочилось) в металл [46] Количество углерода в железе и стали кажется удивительно малым. Нужно помнить, однако, что эти количества выражаются обычно в весовых процентах, а атом углерода намного легче атома железа, грубо говоря, в пять раз. Поэтому в атомных процентах доля углерода значительно больше и может достигать 20%.
. Достижение такой температуры представляло определенные трудности для древних, но все же ее можно было получить на древесном угле, поддувая в него воздух мехами.
Железные руды состоят в основном из окислов железа; чаще всего встречается красный железняк Fe 2O 3. Между прочим, окислы железа используются в красках (охра, железный сурик, мумия).
Первое, что необходимо сделать с рудой, - удалить кислород. Если нагревать руду с помощью древесного угля или кокса, это получается почти автоматически: 3Fe 2O 3+ 11С → 2Fe 3C + 9CO.
Кислород вместе с частью углерода уходит прочь в виде окиси углерода (угарного газа), оставляя карбид железа, называемый обычно цементитом (в нем содержится 6,7% углерода). На практике вместе с первой идет и другая реакция: Fe 2O 3+ ЗС → 2Fe + 3CO.
Таким образом получается также и некоторое количество чистого железа, в конце процесса мы имеем смесь железа и карбида железа, содержащую в целом около 4% углерода. Железо и карбид могут взаимно растворяться, и именно этот раствор, имеющий низкую температуру плавления, был ключом того процесса, который использовали древние для получения железа. Он же идет и в современной домне.
Железные руды содержат не только окислы железа, но и различные минеральные примеси - главным образом, окислы других металлов. Сами по себе они имеют высокие температуры плавления, и если бы руда нагревалась в контакте только лишь с углеродным топливом, то вряд ли удалось расплавить ее полностью. Здесь на помощь приходит флюс, который добавляют обычно в виде извести (СаО) или известняка (СаСО 3). В данном случае известь выполняет те же функции, что и в стекловарении, то есть она снижает температуру плавления нежелезных окислов, образуя вместе с ними легкоплавкую стекломассу. Эта масса называется шлаком. На вид она грязно-коричневого или серого цвета. По нынешним временам она иногда перерабатывается в шлаковату, используемую для теплоизоляции.
Таким образом, на дне печи получается смесь железа, карбида железа и шлака. В самых первых печах эта смесь проплавлялась неполностью, ее извлекали в виде тестообразного куска, слитка, содержащего древесный уголь и другие включения. Включения эти составляли самостоятельную проблему, а, кроме того, из карбида железа негоже было делать оружие и инструмент - карбид очень хрупок. Причина хрупкости карбида железа в том, что в отличие от кристаллов почти чистого железа, построенных на металлической связи, которая благоприятствует движению дислокаций, он частично построен на ковалентных связях, которые не обеспечивают заметной подвижности дислокаций вплоть до температуры около 250° C. Поэтому в таком виде металл куется лишь в горячем состоянии, при комнатной температуре он хрупок.
Такое железо и попадало в руки первых кузнецов. Нагревая это железо до 800-900° C, они ковали его с громадным трудом. Вначале труд был ручным, затем начали использовать силу воды (“кузнечные пруды”!). Ковка имела два следствия. Во-первых, она механически выдавливала большинство включений и часть шлака и снижала содержание углерода в железе. Второе следствие заключалось в следующем. Железо, нагретое до умеренных температур на воздухе, образует окисную пленку, обычно FeO. Нагретое и расплющенное ударами молота железо кузнец сгибал вдвое и снова начинал по нему бить. Пленка окисла попадала между слоями горячего слитка, контакт между слитком и пленкой под ударами молота становился практически идеальным, в результате чего начиналась реакция Fe 3C+FeO → 4Fe + СО.
Читать дальшеИнтервал:
Закладка: