Джеймс Гордон - Почему мы не проваливаемся сквозь пол

Тут можно читать онлайн Джеймс Гордон - Почему мы не проваливаемся сквозь пол - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-build. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Почему мы не проваливаемся сквозь пол
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.13/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Джеймс Гордон - Почему мы не проваливаемся сквозь пол краткое содержание

Почему мы не проваливаемся сквозь пол - описание и краткое содержание, автор Джеймс Гордон, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Еще в первые десятилетия нашего века ответ на вопросы о свойствах материалов
искали в эксперименте. И лишь последние 40 лет ученые, специалисты в области
материаловедения, стали серьезно изучать строение материалов, убедившись, что
их свойства зависят от совершенства в расположении атомов. Обо всем этом живо и
с юмором рассказывает автор книги профессор университета в Рединге
(Великобритания) Джеймс Эдвард Гордон. Книга рассчитана не только на школьников
и студентов, но и на тех, кого по роду работы интересует поведение современных
материалов и прочность конструкций.

Почему мы не проваливаемся сквозь пол - читать онлайн бесплатно полную версию (весь текст целиком)

Почему мы не проваливаемся сквозь пол - читать книгу онлайн бесплатно, автор Джеймс Гордон
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Настраивая микроскоп на максимальное разрешение, можно было увидеть решетку этого кристалла. Пожалуй, она была похожа на нарисованные угольком слегка лохматые полосы на более светлом сероватом фоне - что-то вроде строк на телевизионном экране. Бросалась в глаза невероятная регулярность кристалла. При большом, увеличении бесчисленные рыхловатые полоски тянулись идеально прямо. Конца им, казалось, нет. Число слоев было огромным. Миллионы миллионов молекул, каждая точно на своем месте.

Потребовалось внимательно пересмотреть громадное число фотографий, прежде чем была найдена краевая дислокация. Она выглядела точно так же, как ее рисовали вот уже двадцать лет: одна темная расплывчатая полоска оборвалась, а соседние сомкнулись, чтобы ликвидировать зазор (рис. 51). Ментер успел послать эту фотографию Дж. Тэйлору как раз вовремя - к его семидесятилетию.

Рис 51 Первая прямая фотография краевой дислокации полученной ДжВ - фото 51

Рис. 51. Первая прямая фотография краевой дислокации, полученной Дж.В. Ментером. Большой размер молекулы фталоцианина платины позволил увидеть в электронном микроскопе расстояние между атомами.

Нужно сказать, на нас, работавших в Хинкстоне в то время, эти картинки, выходившие мокрыми из фотокомнаты, оказывали магическое воздействие.

Опыты Ментера по визуализации атомных слоев и дислокаций в них с помощью электронного микроскопа были очень убедительными, это сделало их знаменитыми.

Однако существует и другой подход к той же задаче. В главе 3 мы говорили о сделанной Маршем очень чувствительной разрывной машине для усов и других тонких волокон Эта машина может обнаруживать удлинения попядка 4-5 А, что примерно равно разрешению современного электронного микроскопа. Сдвиг, вызванный иничной дислокацией, дает перемещения около 1 А и, следовательно, не может быть замерен на этой машине. Но источник дислокаций порождает их в таком количестве, которого хватает, чтобы произвести перемещение в 100-500 А, а это уже легко может быть зафиксировано машиной Марша.

Когда мы проводим обычное испытание на растяжение образца осязаемых размеров из любого пластичного материала (например, мягкого металла), то получаем диаграмму напряжение - деформация в виде плавной кривой, изображенной на рис. 52, которая хорошо знакома инженерам и металловедам. Если мы возьмем теперь чрезвычайно тонкий, но пластичный образец (например, большой ус) и испытаем его на машине Марша, то получим нечто совершенно другое.

Рис 52 Обычная кривая напряжение деформация при испытании макроскопического - фото 52

Рис. 52. Обычная кривая напряжение -деформация при испытании макроскопического пластичного образца.

Типичный результат испытания показан на рис. 53. Здесь мы видим упругое удлинение, прерываемое внезапными включениями источников дислокаций. Источники работают совершенно беспорядочно, и вызываемые ими сдвиги протекают практически мгновенно. Именно поэтому диаграмма напряжение-деформация имеет серию ступенек. Дело в том, что на каждом уровне напряжений существуют источники, готовые породить сотни дислокаций. Но эти источники пускаются в ход беспорядочными тепловыми толчками, подобными тем, которыми возбуждаются частицы в случае броуновского движения. То же самое происходит и в большом образце, но в столь многих местах и столь часто, что суммарный эффект выражается плавной кривой. Поведение малого образца с его беспорядочными и внезапными движениями еще раз убеждает нас в реальности дислокаций.

Рис 53 Кривая напряжение деформация для очень малого макроскопического - фото 53

Рис. 53. Кривая напряжение - деформация для очень малого макроскопического образца (уса) материала, испытанного на машине Марша. Пластическое удлинение происходит ступенчато, каждая ступень соответствует работе источника дислокации.

Ползучесть и жаропрочность

Следствия из всего сказанного для поведения металлов в рабочих условиях довольно очевидны. Когда металл нагружается намного ниже предела упругости, то есть работает где-то в глубине гуковского участка кривой напряжение-деформация, удлинение материала не подвержено влиянию времени. При необходимости мы могли бы оставлять материал под нагрузкой в течение веков, не вызывая каких-либо деформаций или повреждений материала. Однако вблизи предела упругости материал становится заметно подверженным влиянию как времени, так и температуры. Мы видели, что даже при комнатной температуре тепловые толчки активируют источники дислокаций, так что пластическая деформация со временем накапливается: материал удлиняется, а в некоторых случаях может разрушиться. Иными словами, мы не можем назвать прочность такого материала, пока не укажем также и скорость нагружения или не уточним, как долго будет действовать на материал нагрузка. Следовательно, такие конструкции, как подвесные мосты, нагруженные непрерывно в течение многих лет, должны быть рассчитаны на меньшие напряжения, чем те конструкции, которые нагружаются ненадолго и от случая к случаю. Используемые на практике металлы обнаруживают некоторую ползучесть даже при довольно малых напряжениях, и на это следует обращать внимание, когда важно обеспечить точность размеров.

Нетрудно представить себе, что напряжения, при которых с ползучестью надо считаться, сильно зависят от температуры. В то же время температура часто определяет вид машины в целом. Особенно она важна для тепловых машин, например таких, как газовые турбины. В целом, чем горячее нагретые части машин, тем большего полезного эффекта можно ожидать от всей конструкции, особенно в отношении экономии горючего. Так как железо плавится при температуре, несколько превышающей 1500° C, а есть и более тугоплавкие металлы, то можно было бы подумать, что не существует особых трудностей в эксплуатации машин при температуре, скажем, 1200° C. Ведь это намного ниже температуры плавления. Но дело обстоит далеко не так.

Верно, что железо не плавится ниже 1500° C. Но ведь расплавленный металл течет под действием собственного веса, то есть при ничтожных напряжениях. А стоит нам приложить механическое напряжение, даже совсем малое, как течение и.неизбежное разрушение появляются задолго до плавления. Прочность резко снижается даже при сравнительно быстрых нагружениях (например, при испытаниях на обычных установках). Более того, когда элементы машин подвергаются длительному нагружению в одном направлении (например, турбинные лопатки под действием центробежных сил), мы должны пристально следить за ползучестью.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джеймс Гордон читать все книги автора по порядку

Джеймс Гордон - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Почему мы не проваливаемся сквозь пол отзывы


Отзывы читателей о книге Почему мы не проваливаемся сквозь пол, автор: Джеймс Гордон. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x