Джеймс Гордон - Конструкции, или почему не ломаются вещи
- Название:Конструкции, или почему не ломаются вещи
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джеймс Гордон - Конструкции, или почему не ломаются вещи краткое содержание
На протяжении всей книги профессор Гордон, как заядлый детектив, занимается
поисками преступника, разрушающего все, встречающееся на его пути - дома,
мосты, корабли, плотины…
Книга посвящена проблемам конструирования и физическим основам теории
прочности. Материал излагается очень доходчиво и популярно, с минимумом формул
(насколько это вообще возможно).
Конструкции, или почему не ломаются вещи - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Твердое топливо на полимерной основе и выглядит, и ведет себя подобно пластилину и, как и пластилин, склонно к растрескиванию, особенно при низких температурах. При запуске ракеты ее корпус, естественно, стремится расшириться вследствие давления газа, так же как расширяются артерии от давления крови; но вместе с корпусом должно расширяться и твердое топливо. Если заряд еще не нагрелся, в нем могут возникнуть трещины, когда окружная деформация корпуса достигнет примерно 1%, после чего пламя проникнет через трещины и разрушит корпус. Это приводит иногда к сенсационным взрывам, подобным тому, когда развалилась одна из ракет Поларис.
Примерно около 1950 г. кому-то пришло в голову, что корпус ракеты лучше делать не из металла, а в виде цилиндрической трубы, полученной геликоидной намоткой двух семейств прочных стекловолокон, связанных между собой смолой. Если правильно рассчитать углы намотки, то можно добиться того, чтобы изменение диаметра трубы под давлением было мало. Правда, при этом осевая деформация такого корпуса будет больше, чем металлического (как и талии в платьях мадемуазель Вионе). Однако по ряду причин продольное удлинение менее опасно для топлива. Если не ошибаюсь, эта идея берет свое начало от диагонального кроя вечерних туалетов, популярных в то время.
Допустимые деформации корпуса ракеты отнюдь не допустимы для кровеносных сосудов. Как мы видели в гл. 7, при колебаниях давления крови артерия должна при значительных изменениях ее диаметра сохранять более или менее постоянную длину. Оба эти требования может удовлетворить конструкция трубы с соответствующей геликоидной намоткой волокон. С такого рода проблемами, как ни странно, постоянно сталкиваются биологи. Примечательно, что Стив Вейнрайт, профессор университета Дюка, изучающий червей, совершенно независимо провел те же самые расчеты, которыми мы занимались лет 20 назад в области ракетной техники [92] Кожица многих червей и других мягкотелых армирована системой геликоидно расположенных коллагеновых волокон (см. гл. 7.), При "создании" червя возникали те же проблемы, что и при создании туалета, но для червя они решились успешнее: "одежда" на нем не мнется.
. Заинтересовавшись этим обстоятельством, я выяснил через профессора Биггса, что и в этом случае толчком послужил крой по косой.
Изобретение косого кроя принесло мадемуазель Вионе. славу в мире модельеров. Она дожила до глубокой старости и умерла недавно в возрасте 98 лет, так, по-видимому, и не узнав о своем весьма значительном вкладе в космическую и военную технику и биомеханику червей.
Касательное напряжение - это растяжение и сжатие, действующие под углом +45°, и наоборот
Если еще немного подумать о стенках балок, решетчатых стенках ферм и о вечерних туалетах косого кроя, то становится очевидным, что касательное напряжение представляет собой просто комбинацию напряжений растяжения и сжатия, действующих под углом +45° (рис. 120). Более того, любое напряжение сжатия и растяжения [93] В отличие от касательного напряжения растягивающее и сжимающее напряжения называют нормальными, поскольку они действуют по нормали к некоторой площадке. - Прим. ред.
приводит к появлению под углом 45° касательного напряжения.
Действительно, твердые тела, особенно металлы, очень часто при растяжении разрушаются вследствие касательных напряжении под углом 45° к направлению растяжения. Именно эти напряжения приводят к появлению "шеек" в металлических стержнях и пластинах при растяжении и к пластичности металлов (рис. 127 и гл. 4). Как мы увидим в следующей главе, почти то же самое может происходить и при сжатии. Многие твердые вещества при сжатии разрушаются путем скольжения, вызванного касательными напряжениями.
Рис. 127. В пластичных металлах наблюдается тенденция к разрушению путем сдвига.
Складкообразование
Толстая пластина или просто кусок металла способны хорошо сопротивляться сжатию, так что если их нагрузить сдвигом, то возникающие под углом +45° напряжения сжатия и растяжения будут для них неопасны. Тонкие панели, мембраны, пленки и ткани плохо сопротивляются сжатию в их плоскости, поэтому при сдвиге на этих элементах образуются складки. Это весьма обычно для тонких металлических панелей, широко используемых в конструкциях самолетов, образование таких складок часто можно наблюдать на поверхности их крыла и фюзеляжа (рис. 128). Инженеры называют это "вагнеровским полем".
Рис. 128. Местные выпучивания обшивки фюзеляжа вертолета.
Еще чаще такие складки можно видеть на одежде, просторных чехлах, скатертях и плохо скроенных парусах. Вряд ли портные так уж часто говорят о вагнеровском поле, но иногда они упоминают о некоем довольно таинственном качестве, известном в текстильном товароведении как сминаемость. Сминаемость ткани зависит главным образом от ее модуля сдвига, и хотя немногие из модельеров могут указать с системе СИ или других единицах величину модуля сдвига G для используемых ими шелковых или хлопчатобумажных тканей, но, чем меньше модуль сдвига материала, тем меньше у него тенденция к образованию нежелательных складок, или сминаемость.
Причина того, что мы не можем использовать для одежды бумагу или целлофан, не показавшись при этом смешными, заключается главным образом в слишком большой жесткости на сдвиг, которой обладают эти материалы, именно поэтому они не могут принимать нужные формы. А вот трикотажные ткани, наоборот, имеют как малый модуль Юнга, так и малый модуль сдвига, поэтому при их использовании легко добиться плотного облегания фигуры. Девушки быстро открыли это качество в вязаных свитерах. Точно так же у молодых людей кожа имеет малый модуль Юнга и модуль сдвига и поэтому легко "подстраивается" под форму тела [94] Отметим, что для того, чтобы пленка, плоская в исходном состоянии, легко облегала поверхность двойной кривизны, необходимо, чтобы у пленки были малы как модуль Юнга, так и модуль сдвига, - обстоятельство, существенное при картографировании (с ним столкнулся Меркатор в середине XVI в.).
. В старости кожа становится более жесткой на сдвиг, печальные результаты чего бывают, к сожалению, слишком очевидными. Недавно профессор М. Кенеди из Стрэтклайдского университета провел широкие исследования упругих свойств кожи человека. В результате старческие морщины, кажется, впервые получили количественное описание.
Интервал:
Закладка: