Коллектив авторов - Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий
- Название:Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий
- Автор:
- Жанр:
- Издательство:Наука
- Год:1983
- Город:М.
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий краткое содержание
Как неодинаковы свойства каждого из «кирпичей мироздания», так же неодинаковы их истории и судьбы. Одни элементы, такие, как медь, железо, сера, углерод, известны с доисторических времен. Возраст других измеряется только веками, несмотря на то, что ими, еще не открытыми, человечество пользовалось в незапамятные времена. Достаточно вспомнить о кислороде, открытом лишь в XVIII веке. Третьи открыты 100 — 200 лет назад, но лишь в паше время приобрели первостепенную важность. Это уран, алюминий, бор, литий
бериллий. У четвертых, таких, как, например, европий и скандий, рабочая биография только начинается. Пятые получены искусственно методами ядерно-физического синтеза: технеций, плутоний, менделевий, курчатовий… Словом, сколько элементов, столько индивидуальностей, столько историй, столько неповторимых сочетаний свойств.
В первую книгу вошли материалы о 46 первых, по порядку атомных номеров, элементах, во вторую
обо всех остальных
Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Менделевий стал первым трансурановым элементом, для которого известно валентное состояние 1+.
Вот, пожалуй, в общих чертах все, что известно сейчас об элементе № 101 — элементе, носящем имя величайшего русского химика… Синтез всех без исключения искусственных элементов стал возможен не только благодаря современной технике, успехам ядерной физики и талантливости тех или иных исследователей. Главной теоретической основой прошлых и будущих синтезов был и остается периодический закон, закон Менделеева.
НОБЕЛИЙ

В 1955 г. была заполнена 101-я клетка таблицы Менделеева. Следующим, естественно, должен был стать синтез 102-го элемента. Создатели новых химических элементов стремились быть последовательными: шаг за шагом, ступень за ступенью. Но каждый последующий шаг за уран давался все труднее.
В 1956 г. к этой работе почти одновременно приступили исследователи из Нобелевского института физики в Стокгольме (в группе работали английские, шведские и американские ученые) и из Института атомной энергии в Москве. Вслед за ними в работу по синтезу 102-го элемента включились ученые Радиационной лаборатории Калифорнийского университета (Беркли).
Не прошло и года, как в научных журналах появились статьи, из которых следовало, что элемент № 102 синтезирован.
Эти сообщения подхватили газеты, о новом элементе узнал весь мир. Но ясности, необходимой для окончательного утверждения нового элемента в периодической системе, не было еще долгие годы. Объясняется это не только трудностями, возрастающими с каждым новым шагом в трансурановую область, но и в какой-то мере поспешностью заключений.
В итоге для окончательного ответа на вопрос: «Что же такое элемент № 102?» — понадобилось десять лет. Десять лет работы исследователей разных лабораторий и разных стран.
Исторически все работы по получению и исследованию 102-го элемента можно разделить на два периода: к первому относятся работы 1956–1959 гг., выполненные в лабораториях Стокгольма, Москвы и Беркли, ко второму — работы в Объединенном институте ядерных исследований в Дубне (1963–1966 гг.).
Общее, что объединяет все эти работы, — метод синтеза. Получить изотопы 102-го элемента можно было только в ядерных реакциях с участием тяжелых ионов, бомбардируя такими ионами мишени из урана и некоторых трансурановых элементов.

Ученые социалистических стран, работающие в Дубне доказали, что все ранние работы по синтезу элемента № 102 были ошибочны. Пользуясь своим правом первооткрывателей они предлагают переименовать этот элемент и назвать его жолиотием — в честь Фредерика Жолио Кюри (1900—1958) — физика, открывшего искусственную радиоактивность, и борца за мир
Разными путями
Вообще говоря, существует несколько способов получения новых элементов. В одном из них используется облучение урана или плутония мощными нейтронными потоками в стационарных или импульсных (взрыв ядерного устройства) условиях. При этом образуются переобогащенные нейтронами изотопы, подверженные бета-распаду. В результате серии таких распадов они превращаются в элементы с большими порядковыми номерами.
Другой метод основан на облучении ближайших тяжелых трансурановых мишеней заряженными частицами. При обстреле ядра протонами его заряд (а следовательно, и помер элемента) может увеличиться на единицу, при бомбардировке ускоренными альфа-частицами — па две. В частности, этим методом был впервые получен менделевий.
И наконец, третий метод заключается в использовании не очень тяжелых мишеней (уран, плутонии, кюрий и др.) и тяжелых бомбардирующих частиц (ионы азота, углерода, неона и других элементов вплоть до ксенона сейчас и до урана в будущем). Реакции с участием тяжелых ионов позволяют увеличить заряд ядра на несколько единиц.
Для синтеза 102-го элемента первый и второй способы непригодны, единственно приемлемым был метод тяжелых ионов. Изотопы 102-го элемента могут образовываться в нескольких реакциях, в таких например:
Проведение подобных реакций, улавливание и регистрация их продуктов связаны с огромными экспериментальными трудностями. Силы электростатического отталкивания между ядрами заставляют увеличивать энергию бомбардирующих частиц до десятков мегаэлектронвольт — иначе ядра не смогут слиться.
Образованные ядра оказываются очень сильно «нагретыми» (энергия их возбуждения достигает нескольких десятков мегаэлектронвольт) и стремятся «остыть», выбрасывая различные частицы. Но новый элемент будет образован лишь в том случае, когда ядро выбросит только ней- троны. Если оно выбросит хоть один протон, новый элемент не удастся зарегистрировать никакими способами: его попросту не будет, ведь номер элемента определяется числом протонов в ядре. Этим объясняются исключительные требования, предъявляемые и к мишени, и к пучкам тяжелых ионов. Все это, конечно, крайне усложняет эксперименты, однако иного пути синтеза 102-го элемента у физиков не было.

Два подхода к атому
Трудно получить атомы новых трансуранов, но когда имеешь дело с элементами второй сотни, не легче бывает доказать, что тебе действительно удалось получить их изотопы и какие именно.
Ожидалось, что время жизни изотопов 102-го элемента будет очень малым: в лучшем случае минуты, чаще секунды и доли секунд. Поэтому исследователям не приходилось рассчитывать на традиционный метод химической идентификации этого элемента. Нужны были новые методы — очень быстрые (экспрессные, как говорят исследователи), чувствительные и точные. По-видимому — физические.
Если вспомнить, что элемент есть совокупность атомов, состоящих из ядра и электронных оболочек, то легко понять разницу в химическом и физическом подходах к изучению элемента. Химики изучают электронные оболочки атома, его способность отдавать или присоединять электроны при взаимодействии с другими атомами. Они устанавливают порядковый номер элемента и его место в периодической системе по особенностям строения внешней части атома. Физики определяют то же самое, но исследуют при этом сами ядра и идентифицируют элемент по его ядерным свойствам.
Читать дальшеИнтервал:
Закладка: