Коллектив авторов - Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий
- Название:Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий
- Автор:
- Жанр:
- Издательство:Наука
- Год:1983
- Город:М.
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий краткое содержание
Как неодинаковы свойства каждого из «кирпичей мироздания», так же неодинаковы их истории и судьбы. Одни элементы, такие, как медь, железо, сера, углерод, известны с доисторических времен. Возраст других измеряется только веками, несмотря на то, что ими, еще не открытыми, человечество пользовалось в незапамятные времена. Достаточно вспомнить о кислороде, открытом лишь в XVIII веке. Третьи открыты 100 — 200 лет назад, но лишь в паше время приобрели первостепенную важность. Это уран, алюминий, бор, литий
бериллий. У четвертых, таких, как, например, европий и скандий, рабочая биография только начинается. Пятые получены искусственно методами ядерно-физического синтеза: технеций, плутоний, менделевий, курчатовий… Словом, сколько элементов, столько индивидуальностей, столько историй, столько неповторимых сочетаний свойств.
В первую книгу вошли материалы о 46 первых, по порядку атомных номеров, элементах, во вторую
обо всех остальных
Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Химические свойства актиноидов (элементов № 90–103) настолько близки, что различить их можно только с помощью очень тонких аналитических методов, сравнительно медленных, требующих большего времени, чем периоды полураспада элементов второй сотни.
Химические методы идентификации элементов были приемлемы при синтезе изотопов, жизнь которых измерялась десятками минут и более (а также 104-го и 105-го элементов, которые по химическим свойствам значительно отличаются от соседних). Но для 102-го и 103-го элементов разработка надежных «быстрых» методов химической идентификации потребовала больших и длительных усилий.
Физические методы позволяют установить заряд ядра и массовое число синтезированного изотопа и изучить его радиоактивные свойства. Они основаны на быстром улавливании ядер — продуктов реакции, на выносе их из зоны облучения и переносе к детекторам излучения для регистрации радиоактивного распада. Эти методы неразрывно связаны с анализом закономерностей ядерных реакций.
Например, при определенных значениях энергии возбуждения из образовавшегося ядра могут «испариться» несколько нейтронов. Каждый нейтрон уносит часть энергии возбуждения — примерно 10–12 Мэв. Для «охлаждения» и относительной стабилизации ядра обычно необходим вылет 4–5 нейтронов. Кривая зависимости выхода ядер нового изотопа (или нового элемента) от энергии налетающих ионов имеет вид колоколообразной кривой: ее вершина соответствует энергии наибольшего выхода ядер, а ширина «колокола» на половине высоты составляет 10–12 Мэв. Эта кривая называется кривой выхода; изучение ее формы дает достаточно оснований для распознания изотопа. Для проверки применяют так называемые перекрестные облучения, цель которых показать, что исследуемый изотоп появляется только в одной определенной комбинации мишень — частица, при определенной энергии бомбардирующих ионов. Если же условия опыта меняются (замена мишени пли частицы, изменение энергии ионов), то этот изотоп не должен регистрироваться.
Но тут важно еще одно обстоятельство: нужно знать, какому виду радиоактивного распада подвержены новые ядра. Физик должен предвидеть, какие продукты образуются при радиоактивном распаде новых ядер, и иметь мужество вносить необходимые поправки в расчеты и в эксперимент, если «улов» окажется не тем, что ожидалось.
Изотопы 102-го элемента, которые могут образоваться в реакциях с тяжелыми ионами, подвержены трем видам радиоактивного распада. Это — альфа-распад, спонтанное деление и захват орбитальных электронов. Первый вид наиболее вероятен.
При альфа-распаде ядро любого изотопа элемента № 102 превращается в ядро одного из изотопов фермия (элемент № 100) и ядро гелия (альфа-частицу). Энергия альфа- частиц при этом будет строго определенной. Следовательно, зарегистрировать искомое ядро можно двумя способами: либо измерением энергии образовавшихся альфа-частиц (E α) и периода полураспада (T 1/2), либо наблюдением дочерних продуктов распада — ядер атомов фермия. Однако в первом случае существенной помехой определения будет фон, обусловленный альфа-распадом короткоживущих изотопов других элементов. При этом образуются альфа-частицы, энергия которых близка к энергии альфа- частиц, возникших при распаде ядер 102-го элемента. В частности, «густой» фон появляется, если в материале мишени или других деталей установки, подвергающихся облучению, есть примеси свинца, висмута, ртути. Вероятность фоновых реакций значительно больше (иногда в миллионы раз) вероятности реакции, приводящей к образованию 102-го элемента. Поэтому тщательная очистка вещества мишени от микропримесей свинца и близлежащих элементов и сверхчистые материалы для изготовления установки — обязательные условия чистого опыта по синтезу 102-го элемента.
Помехи и трудности неизбежны и при определении дочерних продуктов альфа-распада ядер 102-го элемента.
К сожалению, многие из перечисленных трудностей и серьезнейшие требования к условиям эксперимента стали очевидными уже после того, как появились первые сообщения об открытии 102-го элемента.
Первый этап
Первая статья «Получение нового элемента 102» была направлена в редакцию «Physical Review» в июле 1957 г. и опубликована в сентябрьском номере этого журнала. Объединенная американо-англо-шведская группа сообщала об опытах по облучению мишени из смеси изотопов кюрия ( 244Cm — 95%, 245Cm — 1% и 248Cm — 4%) ионами углерода-12 и углерода-13, ускоренными на циклотроне Нобелевского института физики. Ядра — продукты реакции — вылетали из мишени, получив энергию налетающего иона. Их улавливали на специальную фольгу-сборник, которую потом сжигали на платине. Радиоактивный остаток смывали с платины и подвергали химическому анализу методом ионного обмена. После двенадцати получасовых облучений во фракции, соответствующей элементу № 102, было зарегистрировано около 20 альфа-частиц с энергией 8,5±0,1 Мэв. Период полураспада составлял примерно 10 минут.
Многое в этой статье вызывало недоумение, и прежде всего то, что авторы не смогли точно указать массовое число изотопа (оно определяется суммой протонов и нейтронов в ядре). Объяснялось это двумя причинами. Во-первых, не удалось выяснить зависимость выхода продукта от энергии ионов из-за неопределенности этой характеристики потока. Вторая причина — довольно сложный изотопный состав материала мишени.
Сомнение в правильности выводов вызывал и тот факт, что эффект, приписанный элементу № 102, наблюдался лишь на трех из шести использованных мишеней, да и эти три мишени не давали эффекта после трех недель работы. Почему — непонятно. В чистом опыте так быть не должно.
Настораживала и большая величина сечения реакции (большой выход нового излучателя), поскольку пучки ионов были маломощными (0,03–0,1 мка). Но особенно сомнительным было большое время жизни изотопа — период полураспада около 10 минут. Тем не менее авторы работы заявили об открытии элемента № 102 и предложили назвать его нобелием (символ No) в честь Альфреда Нобеля.
Не прошло и года, как американские ученые из Беркли опубликовали статью «Попытки подтвердить существование десятиминутного изотопа элемента 102», в которой сообщили о безуспешных поисках долгоживущей активности с указанными в Стокгольме свойствами. Эта работа была выполнена очень тщательно и более точно, чем в Швеции. Использовались кюриевые мишени того же изотопного состава, те же самые ионы 12C и 13C, однако интенсивность пучка была больше, а энергетический спектр пучка был монохроматическим (т. е. пучок состоял из строго одинаковых по энергии ионов).
Выход всех изотопов более легких элементов в этом эксперименте оказался гораздо больше, чем в стокгольмском, но активность, приписанная элементу № 102, не наблюдалась…
Читать дальшеИнтервал:
Закладка: