Ларс Орстрём - Химия навсегда. О гороховом супе, опасности утреннего кофе и пробе мистера Марша
- Название:Химия навсегда. О гороховом супе, опасности утреннего кофе и пробе мистера Марша
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2021
- ISBN:978-5-389-19541-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ларс Орстрём - Химия навсегда. О гороховом супе, опасности утреннего кофе и пробе мистера Марша краткое содержание
Химия навсегда. О гороховом супе, опасности утреннего кофе и пробе мистера Марша - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Клетки и их узники – это также причина того, что подобные материалы трудно воспроизвести в лаборатории или в промышленных масштабах. Ионы S 3 —слишком велики, чтобы выбраться из неповрежденных клеток, и это также означает, что невозможно положить в клетки что-то еще. Процесс должен быть интегрированным: нестабильные ионы S 3 —должны образовываться более или менее одновременно с образованием окружающих их клеток. Химикам еще предстоит разобраться, как добиться подходящих для этого условий и создать самоцвет того же качества, что и природный.
Однако если это удастся сделать, то это может повредить будущим повстанцам, отступающим в горы Бадахшана и полагающимся на доход от этой торговли. Для Масуда все и без того закончилось плохо. В нападении, которое называют прелюдией к теракту 11 сентября, 9 сентября 2001 года в Ходжа-Бахауддине (в провинции Тахар на северо-востоке страны) на него совершили успешное покушение два террориста-смертника из «Аль-Каиды». С 2005 года 9 сентября считается «Днем Масуда» – государственным праздником в Афганистане [98] Perry, Afghan Commander Massoud.
.
8
Бриллианты навсегда [99] «Бриллианты навсегда» – седьмой фильм о Джеймсе Бонде (1971).
, а также цирконий для подводных лодок
Из этой главы мы узнаем, как взаимное расположение элементов в Периодической таблице помогает предсказать не только их свойства, но и их местонахождение в природе, а еще поговорим о ядерных реакторах, фальшивых бриллиантах и главной драме, развернувшейся в СМИ в 1952 году.
Казалось, что появление обручального кольца с бриллиантом в длинной и запутанной истории любви между Мма Рамотсве – первой женщиной-детективом Ботсваны – и блестящим механиком и владельцем компании Road Speedy Motors в Тлоквенге мистером Дж. Л. Матекони ознаменовало собой конец этой сюжетной линии, которая развивалась на протяжении нескольких томов в серии оригинальных и весьма популярных детективов Александра Макколла Смита (мы уже говорили о них в главе 1). Однако обнаружилась небольшая проблема с участием кубического циркония, и эта история продолжилась и в следующей книге серии [100] Smith A.M. Tears of the Giraffe. Polygon Books, 2000.
.
Рисунок 19.Периодическая таблица, в которой переходные металлы выделены серым, а группа титана дана в увеличенном виде.
Похожие названия элементов и их соединений – одно из досадных неудобств в химии [101] Не хочу, чтобы у вас возникло впечатление, будто химики небрежно относятся к практике присвоения названий – это скорее прозвища или профессиональный жаргон. Международный союз теоретической и прикладной химии (ИЮПАК) постоянно разрабатывает термины, слова и грамматику для того, чтобы в названиях химических соединений не было двусмысленностей. Эта крайне важная деятельность способствует нормальной работе в сфере торговли, контроля, законодательства и таможни по всему миру.
, но часто они возникают исторически, и в случае с цирконием произошло именно так.
Помимо чистого металла циркония, существуют еще циркон и кубический оксид циркония (в русском языке его часто называют «фианит», а в английском языке он известен как zirconia ), и у всех из них есть важные практические приложения. Циркон – это силикат циркония, имеющий формулу ZrSiO 4, а кубический оксид циркония – это особая форма ZrO 2. Как вы уже догадались, последний, помимо других сфер применения, может служить отличной заменой бриллианту в обручальных кольцах.
Мы не станем задерживаться на детальном описании элемента циркония, но вам следует знать, что в Периодической таблице он находится в середине, в большом семействе элементов, которые называют переходными металлами. Возможно, вы слышали о его кузене титане, расположенном прямо над ним, и о родном брате гафнии, стоящем на ступеньку ниже.
Почему я называю их родными братьями? Потому что элементы, расположенные в Периодической таблице в одной группе (то есть столбце), часто имеют схожие химические свойства. В частности, в центральной ее части, в семействе переходных металлов, состоящем из 27 элементов, – все они имеют много общих свойств – два нижних элемента обычно больше всего похожи друг на друга.
Схожие химические свойства циркония и титана означают, что мы обычно можем найти цирконий там, где добываем гораздо более распространенный титан; кроме того, как только мы отделим титан от циркония, за ними потянется некоторое количество гафния – примеси, от которой гораздо труднее отделаться.
Ушлого ювелира из Габороне не волнует, есть ли в его фальшивых бриллиантах следы HfO 2, смешанного с ZrO 2. Для нетренированного глаза это никак не повлияет на блеск, твердость или прозрачность камня, но для инженеров, проектирующих первые ядерные реакторы для электростанций в США, дело обстояло совсем иначе.
Всесторонние испытания различных материалов после Второй мировой войны показали, что сплав, основным компонентом которого служит металлический цирконий, лучше всего подойдет для покрытия оксида урана в топливных стержнях, которые предполагалось использовать в ядерных реакторах. Загвоздкой для инженеров, внедрявших эту технологию на электростанциях, оказалось то, что металл должен быть полностью очищен от примесей гафния. Причина заключается в том, что цирконий и гафний схожи во всем, кроме ядра – того места, где заканчивается химия и начинается физика. Эти два элемента (или, выражаясь точнее, их природные изотопы) очень по-разному реагируют, когда сталкиваются с нейтронами; как объяснил бы физик, их нейтронные сечения сильно различаются.
Для того чтобы цепная реакция деления ядра урана в ядерном реакторе шла с соответствующей низкой скоростью, требуется постоянный поток нейтронов. Если их будет слишком много, реакция выйдет из-под контроля, а если слишком мало – она просто прекратится. В обычном ядерном реакторе происходит следующее: уран-235, или 235U на языке химиков, сталкивается с нейтроном, имеющим массовое число 1. Далее может произойти множество вещей, самая важная из которых расщепление ядра урана с образованием двух новых атомов, 92Kr и 141Ва. Как вы заметили, сумма массовых чисел этих двух атомов не равняется 235 + 1 = 236: не хватает трех атомных единиц массы. Это происходит потому, что во время реакции испускаются три новых нейтрона, каждый из которых может расщепить еще одно урановое ядро и выпустить еще три новых нейтрона. Это и есть основа знаменитой цепной реакции в атомной бомбе. Эта реакция может стать совершенно неуправляемой, если тщательным образом не контролировать количество свободных нейтронов в реакторе.
Читать дальшеИнтервал:
Закладка: