Лука Турин - Секрет аромата. От молекулы до духов. Как запах становится произведением искусства
- Название:Секрет аромата. От молекулы до духов. Как запах становится произведением искусства
- Автор:
- Жанр:
- Издательство:Эксмо
- Год:2021
- Город:Москва
- ISBN:978-5-04-155462-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Лука Турин - Секрет аромата. От молекулы до духов. Как запах становится произведением искусства краткое содержание
Лука Турин, знаменитый парфюмерный критик, рассказывает увлекательно, доступно, весело и убедительно о самом загадочном из чувств.
В формате PDF A4 сохранён издательский дизайн.
Секрет аромата. От молекулы до духов. Как запах становится произведением искусства - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Хлорид натрия не распадается потому, что его удерживает то, что держит вместе всё остальное — электрические силы. Трудно спокойно воспринимать факт, что весь наш мир склеен теми же силами, которые заставляют клочки бумаги прилипать к натертому пластмассовому стержню, но это так. В случае с хлоридом натрия натрий потерял один электрон и стал положительно заряженным, а хлор приобрел один и стал заряженным отрицательно.
Поэтому они держатся вместе. Но даже нейтральные атомы удерживаются электрическими силами, и причина этого иллюстрируется рисунком вверху, где облако — отрицательное, а ядро — положительное. Если сдвинуть два нейтральных атома (вверху) так, чтобы орбиты их электронов перекрывали друг друга (в середине), то в области перекрытия возникнет аккумуляция электронов. Возьмем два ядра и эту пересекающуюся область (внизу) и получим чудесный маленький сэндвич из положительного-отрицательного-положительного зарядов, которые стремятся быть вместе.
Однако не все так просто, иначе химики не получали бы такие большие зарплаты и не занимали престижные профессорские должности. Каждый электрон на внешней орбите самостоятельно создает свое маленькое облако перекрытия. Это означает, к примеру, что углерод, имеющий на внешней орбите четыре электрона, может создать четыре таких облака, в то время как водород, с одним-единственным электроном, может создать одно.

Соединим один атом углерода и четыре атома водорода и получим молекулу метана, или CH 4, изображенную ниже. Он также известен как болотный газ, и это тот самый газ, который сочится из земли в угольных шахтах и убивает людей. Более точное изображение помещено ниже.

Белые атомы водорода на самом деле организуются не в плоскости крестообразной формы, а на максимальном удалении друг от друга, в четырех углах тетраэдра. В целом это несколько напоминает молочные картонки фирмы Tetrapak 1960-х гг. Большинство атомов углерода в итоге создают по четыре связи, и не только с водородом, но и, например, с другими атомами углерода.
Ну и поскольку мы в теме, посмотрим на структуру кумарина: модель, созданная из шариков, структура, показывающая элементы, и упрощенная нотация, которой пользуются современные химики. В упрощенной нотации предполагается, что все — атомы углерода (связанные с соответствующим количеством атомов водорода и имеющие по четыре связи), если не конкретизировано иное.

Все это выглядит как набор конструктора, и химики любят в него играть. Химики, по традиции, определили цвета для различных атомов, или элементов. Углерод — черный, потому что самая дешевая его форма — графит, используется как грифель для карандашей. Сера — желтовато-зеленый, как цвет природных серных отложений. Кислород — красный, возможно, потому, что химическим веществом, из которого его впервые выделили, был любимый алхимиками оксид ртути, имеющий интенсивный красный цвет.

Маленькие первичные атомы водорода (из которого состоит практически вся наша вселенная) изображаются белым цветом. Азот получил синий цвет, что вполне понятно, если вспомнить, что воздух в небе у нас над головой состоит преимущественно из азота. Эти и все остальные химические элементы имеют еще и буквенные обозначения: C, H, O и N. Нотация, в которой водород опускается, используется химиками для быстрой записи (своего рода «скоропись»). Это скорее не 3D, а 1/ 2D, но она вполне внятно представляет форму молекул и их взаимодействие. Это и удачная мнемосхема, поскольку у нас прекрасная память на схемы.
Начала запаха: химические слова
Как я уже писал, база данных расположенной в Германии почтенной организации Beilstein (имеющая сейчас и веб-сайт), содержит перечень 8 128 462 различных молекулярных структур, обнаруженных и описанных с 1779 по 2001 г. Обратите внимание на начальную дату: именно тогда люди наконец отказались от алхимических идей [12] Самая лучшая книга об алхимии, которая отдает должную дань без снисходительности всем этим якобы донаучным исследователям — небольшой томик Фрэнка Шервуда Тейлора «Алхимики», давным-давно, к сожалению, распроданная. — Прим. авт.
и стали использовать химическую нотацию, которая применяется до сих пор. Все эти молекулы — отнюдь не теоретические построения. Каждую из них где-то когда-то создал какой-то химик, и для того, чтобы другие могли это повторить, публиковались рецепты.
Чтобы легче понять количество и разнообразие молекул, полезно представить их в виде слов, записанных языком, который называется SMILES. Блестящая идея создания особого языка пришла в голову Дэвиду Вейнингеру [13] J Chem. Info. Comput. Sci., 28: 31–36.
в 1988 г. Аббревиатура расшифровывается как Simplified Molecular Input Line Entry System. (Система Упрощенного Представления Молекул в Строке Ввода). Система была разработана для компьютеров, которые, как известно, намного лучше разбираются с обработкой последовательности знаков, т. е. слов, чем с изображениями.
В SMILES каждая молекула представлена как слово, каждая буква которого представляет атом, и содержит встроенные инструкции о том, как они соединяются. Например, ниже представлены формулы циклогексана (шесть атомов углерода в цикле), пирана (традиционное, или «общепринятое» название) и циклогексанона (шесть атомов углерода с «одним» или С=О выступающим). Как это работает, очевидно само по себе: когда есть замкнутый цикл, его разрезают и помечают концы (С1 связан с С1), и так далее. Используя SMILES, можно представить практически любую молекулу в простом, машиночитаемом виде, что не требует сложных алгоритмов представления структур в виде схем, графов и пр. Например, наш кумарин на языке SMILES выглядит как O=C1OC2=CC=CC=C2C=C1.

А теперь немного полезной информации о связи запаха и SMILES:
1. Наш нос любит короткие слова, обычно состоящие менее чем из двадцати букв.
Например, O=C1CCCCCCCCCCCCCCC1 пахнет как мускус, а O=C1CCCCCCCCCCCCCCCCC1, на два С длиннее, запаха не имеет. Грубо говоря, всё, имеющее более 16 С, имеет значительные шансы оказаться без запаха. Более крупные объекты не воспринимаются нашим сенсорным механизмом.
Читать дальшеИнтервал:
Закладка: