Ник Лэйн - Кислород. Молекула, изменившая мир
- Название:Кислород. Молекула, изменившая мир
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2016
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ник Лэйн - Кислород. Молекула, изменившая мир краткое содержание
Ник Лэйн ответит на вопрос: кислород — наш единственный шанс на выживание или самый худший враг?
Кислород. Молекула, изменившая мир - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Результаты Уольбах нашли дальнейшее подтверждение. В 1994 г. Майкл Крюж и его коллеги из Университета Южного Иллинойса описали полосу ископаемого древесного угля трехметровой толщины в Эл-Мимбрал, на севере Мексики. На основании странного состава породы из наземных и морских отложений был сделан вывод, что наземные растения обуглились в процессе сильного пожара (возникшего в результате падения метеорита), а затем были смыты в воду огромной волной цунами («мегаволной»), вызванной попаданием метеорита в мелкое тропическое море. Такая интерпретация событий не является однозначной, но доказательства гигантского пожара кажутся бесспорными.
Если подобный пожар действительно имел место, богатая кислородом атмосфера могла способствовать исчезновению динозавров. Ведь на Землю падали и другие крупные метеориты, но они не вызывали массовой гибели всего живого. Например, 15 млн лет назад на территории современной Германии в результате падения метеорита возник кратер Райс. Удар был так силен, что гигантские булыжники разлетелись на расстояние до 95 км — в Швейцарию и в Чехию, а капли расплавленной породы оказались за сотни километров от места падения, но при этом не пострадала даже местная популяция млекопитающих. От падения метеоритов в Монтагнайс и Чесапик-Бей остались кратеры диаметром 45 и 90 км, но никакого массового вымирания видов тоже не произошло. Вполне вероятно, что для взрыва требуется дополнительный кислород.
Итак, две независимые экспериментальные модели (массовый баланс и изотопные подписи) подтверждают, что уровень кислорода в атмосфере во время каменноугольного и раннего пермского периода поднимался до отметки 35%. Древнейшие растения выдерживают высокую концентрацию кислорода и продолжают расти. В подобных условиях вероятность пожаров повышается, но даже в сухую погоду зеленому покрову Земли не грозит уничтожение. Дженнифер Робинсон также подметила, что современной аналогией может быть истонченная и местами поврежденная поверхность военных полигонов в регионах с сезонными засухами. Болота защищают от пожара, но даже болотные растения древности имеют морфологические признаки адаптации к огню, включая толстую кору с высоким содержанием лигнина, глубокие клубни и высокую крону. Некоторые хвощи и папоротники, дошедшие до нашего времени, отличаются высоким содержанием огнеупорных компонентов, таких как силикат. По-видимому, в ту пору частенько случались обширные пожары, что подтверждается обилием ископаемого древесного угля, который, скорее всего, образовался при высокой температуре, характерной для горения в богатой кислородом атмосфере. По некоторым данным, меловой период закончился катастрофическим пожаром. В целом этой информации достаточно, чтобы заставить ученых вернуться к старому вопросу о гигантизме насекомых. Связано ли это явление с высоким содержанием кислорода в воздухе?
В начале главы я процитировал слова датского геолога М. Г. Руттена. Он утверждал, что примитивные органы дыхания насекомых могут ограничивать их размер и эффективность полета. Воздух попадает в тело насекомого через тонкие трубочки (трахеи), которые открываются наружу прямо через поры внешнего скелета, а внутри разветвляются, доставляя воздух к каждой клетке тела. Идея Руттена заключается в том, что размер летающего насекомого ограничен диффузией кислорода в трахеях. При увеличении размера тела кислород должен преодолевать более значительное расстояние, так что полет становится менее вероятным. Эффективный верхний предел пассивной диффузии в столбике пробирки при современном содержании кислорода в воздухе составляет около 5 мм. По данным физиолога Роберта Дадли из Университета Техаса, повышение содержания кислорода в атмосфере до 35% увеличивает скорость диффузии кислорода примерно на 67%. Другими словами, при повышенном содержании кислорода в воздухе он распространяется по трахеям на более дальние расстояния. Это способствует насыщению кислородом летательных мышц, позволяет создавать более толстые ткани большего размера. Если другие факторы отбора, такие как хищничество, способствует увеличению размера тела, повышение концентрации кислорода сдвигает физический барьер, препятствующий росту.
До сих пор все ясно, однако эта линия рассуждений имеет изъян: возможно, дыхательную систему насекомых можно назвать примитивной, но никак не неэффективной: летающие насекомые имеют максимальную среди всех животных скорость метаболизма. Полет практически всех без исключения насекомых является аэробным процессом: для получения энергии они полностью зависят от кислорода. Человек снабжен хорошо вентилируемыми легкими, мощным сердцем, сложной системой циркуляции крови, наполненными гемоглобином эритроцитами, но при этом его метаболизм гораздо менее эффективен. Спринтеру не хватает энергии, которую он получает за счет дыхания, так что его мышцам приходится использовать значительно менее эффективный процесс получения энергии за счет анаэробного расщепления глюкозы (гликолиз), при котором в качестве побочного продукта вырабатывается ядовитая для организма молочная кислота. Чем дольше мы выполняем тяжелое физическое упражнение, тем больше молочной кислоты накапливается в теле, и может наступить паралич, даже если мы убегаем от смертельной опасности. Усталость ног — результат незнакомой насекомым недостаточности дыхания. Вы наверняка думали о том, что мухам никогда не надоедает жужжать, и, вероятно, вы правы: к нашему сожалению, они не отравляют себя молочной кислотой.
Определить пределы возможностей полета насекомых достаточно сложно. В нескольких экспериментах 1940-х гг. насекомых привязывали за ниточку, прикрепляли к их телу малюсенькие грузики, сокращали концентрацию кислорода в воздухе и заменяли азот легкими смесями гелия. Все эти эксперименты показали удивительно широкий предел возможностей насекомых. Некоторые из них могут летать даже в среде гелия с содержанием кислорода всего 5%. В большинстве экспериментов насекомые не получали никакого преимущества от увеличения концентрации кислорода до 35%. Общий вывод был таков, что летательная способность насекомых не ограничена диффузией кислорода в трахеях, так что кислород не может быть стимулом увеличения размера тела. Так до сих пор считают многие энтомологи, но постепенно ситуация меняется.
Высокая эффективность системы трахей объясняется тем, что кислород находится в газовой фазе, где быстро диффундирует, и поступает в водную фазу только в самый последний момент — уже в летательных мышцах. В результате скорость доставки кислорода по трахеям обычно превосходит скорость его расходования в тканях. Единственный неэффективный элемент системы — слепые окончания трахей, которые разветвляются на тонкие трубочки примерно так же, как наши бронхи разветвляются на бронхиолы. Как мы начинаем задыхаться, если не можем вдохнуть, так и дыхание насекомых лимитируется диффузией газов в слепых окончаниях трахей. Большинство насекомых, как и мы с вами, решают эту проблему путем более активной вентиляции трахеи.
Читать дальшеИнтервал:
Закладка: