Джон Дрейер - История астрономии. Великие открытия с древности до Средневековья
- Название:История астрономии. Великие открытия с древности до Средневековья
- Автор:
- Жанр:
- Издательство:Литагент Центрполиграф ООО
- Год:2018
- Город:Москва
- ISBN:978-5-9524-5284-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джон Дрейер - История астрономии. Великие открытия с древности до Средневековья краткое содержание
История астрономии. Великие открытия с древности до Средневековья - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Новые планетные таблицы – «Рудольфинские», над которыми Кеплер работал на протяжении многих лет, были опубликованы в 1627 году в Ульме под личным надзором Кеплера, который для этого оставил Линц и перебрался в Ульм в конце предыдущего года. Весьма характерный для благородства автора жест: прямо на титульном листе он заявил, что таблицы содержат возрожденную астрономию, задуманную и осуществленную Тихо Браге, «фениксом астрономов».
Но задолго до завершения этой работы гений Кеплера одержал еще один триумф: открытие третьего закона движения планет. Он содержится в его труде Harinonices Mundi Libri Y, «Гармонии мира», опубликованном в Линце в 1619 году в продолжение «Тайн мироздания», завершая, к удовлетворению автора, цепочку идей о гармонии мира, занимавших его ум с юности.
Надо помнить, что главным желанием Кеплера, когда он приехал к Тихо Браге в Чехию, было получить способ вычисления более точных значений средних расстояний и эксцентриситетов планет, чтобы проверить его теорию пяти правильных многогранников. Когда после многих лет кропотливого труда он вычислил расстояния на основе наблюдений Браге, оказалось, что теория лишь приблизительно верна, поскольку соседние планетные сферы неточно совпадают со сферами, вписанными в соответствующие многогранники или описанными вокруг них. Из этого Кеплер сделал вывод, что расстояния планет от Солнца берутся не просто из правильных геометрических тел, каковая идея, казалось бы, подтверждается тем обстоятельством, что максимальные и минимальные расстояния двух планет дают четыре соотношения, то есть во всей планетной системе содержатся двадцать отношений расстояний последовательно расположенных планет, в то время как геометрические тела дают только пять. Отклонение устройства мира от пяти правильных тел, а также меняющиеся расстояния между планетами в процессе их обращения являются следствием «гармонии мира», и эту гармонию следует искать в наибольших и наименьших расстояниях планет от Солнца, поскольку требуется найти закон, определяющий форму орбиты, то есть эксцентриситет. Сами расстояния не производили такого впечатления, будто между ними существует какая-либо гармония, из чего следовало, что его нужно искать в движениях планет (in ipsis motibus, non in intervallis), то есть в угловых скоростях с точки зрения общего источника движения – Солнца. В нижеследующей таблице для каждой планеты приведена гелиоцентрическая угловая скорость (суточное движение) в афелии и перигелии.

Здесь мы можем сразу же отметить, что гармония для Кеплера – это всего лишь математическая концепция; он не воображает, будто в самом деле существует какая-то «музыка сфер»: «lam soni in coelo nulli existunt, пес tarn turbulentus est motus, ut ex attritu aurae coelestis eliciatur stridor». Суточная гелиоцентрическая угловая скорость в секундах представляет число колебаний определенного тона, но по мере изменения скорости в процессе обращения тон не остается одним и тем же, но проходит через музыкальный интервал, длина которого зависит от эксцентриситета и может быть легко определена, если за наименьшую скорость считать число колебаний, которые основной тон совершает в единицу времени. Но положение интервала должно каким-то образом зависеть от абсолютной длины радиус-вектора, поэтому нужно найти закон, связывающий среднее движение (или период обращения) со средним расстоянием, так как если бы гармония небес существовала, то из нее можно было бы вычислить среднее расстояние. Это вычисленное расстояние затем нужно согласовать с наблюдаемым. После многочисленных попыток 15 мая 1618 года Кеплер открыл свой знаменитый третий закон, гласящий, что квадраты периодов обращения любых двух планет пропорциональны кубам их средних расстояний от Солнца. Этому закону он вскоре нашел применение не только для планет, но и для четырех недавно обнаруженных спутников Юпитера.
Итак, есть три способа, которыми созвучие может проявляться в движении планет. Во-первых, отношение самого медленного движения в афелии к самому быстрому движению в перигелии является интервалом по причине эксцентриситета планетной орбиты. Из приведенной выше таблицы видно, что интервалы почти идеально созвучны, так как диссонанс меньше полутона, за исключением случаев Земли и Венеры вследствие их малых эксцентриситетов. Во-вторых, крайние точки движения двух соседних планет можно сравнить двояко друг с другом, поскольку интервал можно либо взять от самого низкого тона (движение в афелии) внешней планеты до самого высокого тона (перигелий) следующей ниже планеты или от самого высокого тона внешней до самого низкого внутренней. Первый Кеплер называет расходящимся, а второй – сходящимся интервалом, и приведенная выше таблица показывает почти идеальное созвучие в обоих случаях, за исключением интервала между орбитами Марса и Юпитера, который согласуется с тетраэдром, а не с музыкальной теорией. В-третьих, созвучие может существовать между всеми шестью планетами.
Чтобы найти, к какой октаве относятся самый низкий и самый высокий тон каждой планеты, цифры, выражающие их наибольшую и наименьшую угловую скорость, следует разделить на некую степень числа 2 для получения соотношений меньше, чем 1:2, то есть в пределах октавы. Использованный показатель 2 тогда будет указывать на то, в какую октаву входит тон.

Принимая, что скорость Сатурна в афелии равна 0, самый низкий тон Земли также будет соответствовать ноте соль, так как эти два тона представлены значениями 1′46″ и 1′47″, практически идентичными, но это будет высокая соль, на пять октав выше. Значение для самого высокого тона Меркурия 3′0″ очень близко к 5/ 3от 1′47″, тон – ми E υ, на семь октав и большую сексту выше самого низкого тона Сатурна. Таким образом, планеты исполняют следующие мелодии:

Это очень интересное представление эксцентриситетов планет, ведь с первого взгляда видна большая разница между почти круговой орбитой Венеры и весьма значительным эксцентриситетом Меркурия. Разрыв, как известно разделяющий орбиты Марса и Юпитера, тоже сразу бросается в глаза.
Мы бы рисковали зайти слишком далеко, если бы попытались здесь показать, как Кеплер подбирал интервалы между шестью планетами, чтобы заставить производимый ими хор звучать в абсолютно идеальной гармонии. В конце концов он получает следующие соотношения наименьшей и наибольшей скорости:
Читать дальшеИнтервал:
Закладка: