Карл Гильзин - Путешествие к далеким мирам
- Название:Путешествие к далеким мирам
- Автор:
- Жанр:
- Издательство:Государственное издательство детской литературы Министерства просвящение РСФСР
- Год:1960
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Карл Гильзин - Путешествие к далеким мирам краткое содержание
В книге рассказывается о том, как создавалась астронавтика — наука о межпланетных сообщениях, об основах этой науки, ее удивительном настоящем и увлкательном будущем. В ней говорится о многочисленных невиданных трудностях, стоящих на пути человека в Космос, и о том, как наука и техника преодолевают эти трудности, как готовится полет человека в космическое пространство.
Путешествие к далеким мирам - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Теперь уже хорошо известно, что по мере приближения скорости полета самолета к скорости звука в воздухе, равной примерно 340 метрам в секунду, или 1225 километрам в час, [15] У земли, при обычной температуре воздуха. Эта скорость меняется прямо пропорционально корню квадратному из температуры воздуха и, следовательно, с увеличением высоты полета уменьшается.
сопротивление воздуха резко увеличивается. Чем ближе скорость полета к скорости звука, тем больше это дополнительное, так называемое волновое, сопротивление. При этом сам полет становится неустойчивым, самолет начинает вибрировать, управление им нарушается.
Немало пришлось потрудиться советским ученым-аэродинамикам, опиравшимся на идеи Чаплыгина, пока им удалось найти средства уменьшения неприятностей, связанных с полетом, скорость которого приближается к скорости звука. Результатами этих трудов являются и непривычно тонкие крылья скоростных самолетов, [16] Показательно для характеристики диапазона научных интересов Циолковского, что им предложен профиль крыла сверхзвукового самолета, так называемый двусторонний клин (рис. на стр. 39), который, возможно, в будущем найдет широкое применение — в частности, для крыла межпланетного корабля, совершающего планирующую посадку в земной атмосфере.
и необычная форма этих крыльев, придающая современному скоростному самолету вид стремительно летящей стрелы, и многие другие особенности этих машин.
Стало окончательно ясно, что перешагнуть через скорость звука, пробить звуковой барьер с обычным поршневым двигателем не удастся, об этом нечего и мечтать. Авиация обратилась за помощью к реактивной технике.
Это был естественный и логичный шаг, ибо реактивные двигатели наиболее выгодны именно для высоких скоростей полета. В этом легко убедиться на примере хотя бы той же пороховой ракеты.
Представьте себе испытание такой ракеты на стенде. Двигатель работает, порох сгорает; из сопла ракеты с огромной скоростью вырываются раскаленные пороховые газы, но… все это напрасно, никакой полезной работы при этом двигатель не совершает. Действительно, ведь работа есть действие силы на некотором пути, а в данном случае сила имеется: это сила реакции струи вытекающих газов, но путь-то отсутствует — ракета неподвижна. Это все равно, как если бы, скажем, вам было велено передвинуть тяжелый ящик в сторону, метра на два. Сколько бы вы ни трудились, пытаясь сдвинуть этот ящик, вы бы еще полезной работы не совершили. Вот если бы ящик сдвинулся со своего места, то работа была бы совершена, именно работа, равная произведению вашего усилия на пройденный ящиком путь. Пока ящик неподвижен, затрачиваемая вами энергия теряется бесполезно.

Но вот ракета полетела и мчится со все большей скоростью. Теперь уже работа ракеты совершается, она равна силе реакции струи газов, помноженной на пройденный ракетой путь.
Чем больше скорость полета, тем больше эта полезная работа. Легко сообразить, когда энергия газов будет полностью использована для совершения полезной работы — продвижения ракеты в окружающей среде.
Очевидно, как раз тогда, когда скорость полета ракеты станет в точности равной скорости истечения газов. Действительно, в этом случае газы, вытекающие из ракеты с огромной скоростью, будут относительно окружающего их воздуха совершенно неподвижными. Это и значит, что всю свою кинетическую энергию газы потеряли — она перешла в полезную работу движения ракеты. Правда, чтобы наступил такой момент, пороховая ракета должна лететь с очень большой скоростью — примерно 6–7 тысяч километров в час, но чем ближе скорость полета к этой наивыгоднейшей скорости, тем более эффективной становится работа реактивного двигателя.
Мы видим, что реактивные двигатели действительно рождены для высоких скоростей. Именно поэтому реактивные двигатели, вероятно, никогда не найдут широкого применения в наземном или водном транспорте — на железных дорогах, автомобилях, судах. При относительно малых скоростях передвижения, возможных в этих случаях, реактивные двигатели невыгодны и уступают тому же поршневому двигателю внутреннего сгорания. Другое дело в воздухе, где возможны огромные скорости, — в авиации и артиллерии. Здесь реактивные двигатели не имеют себе равных. Что же говорить о безвоздушном межпланетном пространстве?.. Кстати сказать, этот вывод о выгодности использования реактивных двигателей при больших скоростях полета был впервые в мире также получен Циолковским.
Пока скорость полета самолетов была относительно небольшой, авиацию вполне устраивал поршневой двигатель, а применение реактивных было бы невыгодным. Но вот скорость сильно выросла, поршневой двигатель стал сдавать — и все взоры обратились к двигателю реактивному.
Но авиационный реактивный двигатель должен, очевидно, во многом отличаться от двигателей реактивной артиллерии, и в первую очередь тем, что он должен обеспечивать длительный полет. Уже не секундами, как у пороховых реактивных двигателей, а часами должна измеряться продолжительность работы реактивного двигателя самолета. В этом случае все топливо нельзя разместить в камере сгорания, как в пороховом двигателе, а его нужно подавать туда небольшими порциями. Следовательно, топливо для авиационного двигателя не должно быть твердым. Но это еще не все, — такой двигатель должен расходовать мало топлива, то есть быть экономичным, чтобы обычных запасов топлива на самолете было достаточно для сравнительно продолжительного полета.
Двигатели, удовлетворяющие этим требованиям, известны. Это так называемые воздушно-реактивные двигатели. Они работают не на твердом, а на жидком топливе и используют для сжигания его кислород из атмосферы. В результате этого продолжительность их работы неизмеримо больше, чем пороховых двигателей.
Первые проекты воздушно-реактивных двигателей появились в ряде стран, в том числе и в нашей, еще в прошлом веке.
В 1867 году русский изобретатель Н. Телешов запатентовал воздушно-реактивный двигатель с компрессором для сжатия воздуха. Этот двигатель он назвал теплородным духометом. Аналогичные двигатели были предложены за рубежом почти на полвека позже.
В мае 1884 года изобретатель Якубинский доложил на заседании воздухоплавательного отдела Русского технического общества свой первый в мире проект воздушно-реактивного двигателя, специально предназначенного для летательных аппаратов.
Читать дальшеИнтервал:
Закладка: