Тулио Редже - Этюды о Вселенной
- Название:Этюды о Вселенной
- Автор:
- Жанр:
- Издательство:Мир
- Год:1985
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Тулио Редже - Этюды о Вселенной краткое содержание
В книге известного итальянского физика - теоретика Т. Редже популярно рассказывается о проблемах и достижениях современной физики, астрофизики и космологии. Автор легко и непринужденно переносит читателя из мира элементарных частиц в мир разбегающихся галактик, умея выявить общность, на первый взгляд, далеких друг от друга явлений природы.
Парадоксы теории относительности и гравитация, черные дыры и эволюция Вселенной, строение атома и сверхпроводимость - таков диапазон рассмотренных тем. Последние главы книги посвящены великим ученым: Галилею, Максвеллу, Эйнштейну и Гёделю. Приводится также короткий юмористически - фантастический рассказ о создании вечного двигателя.
Книга будит воображение, написана живым, образным языком, без использования математического аппарата.
Этюды о Вселенной - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Сегодня мало кто из физиков считает оправданными усилия, предпринятые Эйнштейном на пути к полному объединению теорий, даже если многие признают, что в его последних работах имеется много интересных идей, которыми для различных построений впоследствии воспользовались другие, вдохновляемые примером прославленного мастера. Ни одна из этих теорий не достигала конечной цели. Причин этого много.
Сначала Эйнштейн думал объединить гравитацию и электромагнетизм, он считал, что все явления иной природы окажутся следствиями законов новой единой теории. Он не представлял, насколько расширится круг так называемых «элементарных» частиц и насколько усложнятся их внутренняя структура и поразительные свойства симметрии. Все это было открыто благодаря технической революции в экспериментальной физике уже после его смерти. Более того, Эйнштейн, как известно, так и не принял квантовую механику, хотя, открыв кванты света (фотоны), он стал одним из ее создателей.
Невозможно разобраться в запутанной структуре субатомного мира, не пользуясь квантовой механикой, без нее нельзя понять законы симметрии; планы экспериментов составляются на языке квантов. Поэтому не Эйнштейну, а другим, работавшим в другом направлении, удалось достичь определенных успехов в частичном объединении теорий. Среди таких объединенных теорий, созданных в последнее время, особенно важной стала теория Салама и Вайнберга (с участием Глэшоу; свой вклад в развитие этой теории внесли также т'Хоофт, Хиггс и другие), в которой объединяются слабые взаимодействия и электромагнитное поле, а гравитация остается в стороне. в самом ближайшем будущем, несомненно, появятся новые объединенные теории.
В каком смысле развитие физики можно назвать процессом объединения? Типичный пример нам дал Максвелл, объединивший оптику и теорию электромагнитного поля, показав при этом, что свет – это колебания электромагнитного поля. Тот же Максвелл заложил основы для объединения термодинамики и аналитической механики, создав кинетическую теорию газов. Согласно этой теории, тепло представляет собой не особую форму энергии, а всего лишь механическую энергию, беспорядочно распределенную между миллиардами миллиардов частиц, составляющих газ.
Схема Эйнштейна, пожалуй, лучше очерчена и более точна. Эйнштейн был убежден (справедливо, как нам кажется) в том, что описание природы должно быть основано на понятии волны. Хорошо известным примером этого служит как раз электромагнитное поле. Само его название указывает, что это поле состоит из двух составляющих, из полей электрического и магнитного. Вполне законно рассматривать эти два поля как независимые величины, но сам Максвелл интуитивно чувствовал, что они каким-то таинственным образом связаны.
Теперь вспомним специальную теорию относительности и будем рассматривать разных наблюдателей, движущихся равномерно друг относительно друга. Эйнштейн сразу почувствовал исключительную важность того, что один наблюдатель может увидеть смесь электрического и магнитного полей, в то время как другой будет считать это же поле только электрическим, и наоборот. Отсюда и возникает та необходимость объединения, о которой мы говорили раньше. Так что релятивистский вариант теории Максвелла оказался объединенным в упомянутом нами смысле. в этом же смысле можно утверждать, что общая теория относительности объединила силы, казавшиеся несвязанными, например, гравитацию и инерцию, силы тяготения и центробежные.
Кроме самого Эйнштейна попытки создать единую теорию были предприняты еще в 1919 г. математиком Вейлем. Чтобы дать об этом некоторое представление (пусть даже неполное), я расскажу о понятии кривизны в общей теории относительности.
Гауссова кривизна
Применительно к линии на плоскости смысл понятия кривизны очевиден. Так, прямая линия не имеет кривизны, в то время как кривизна окружности постоянна. в общем случае кривизна линии меняется от точки к точке.
Физиков, однако, интересуют не только простые геометрические фигуры. Так, больший интерес вызывает рассмотренный Гауссом случай поверхности в. трехмерном пространстве. Почему? Как известно, кривую линию на плоскости всегда можно выпрямить, не растягивая и не укорачивая ее. Если же взять сферическую поверхность, то какой бы маленький кусок ее мы ни пытались уложить на плоскость, нам все равно пришлось бы его вытянуть, сломать или еще как-то деформировать. Таким образом, сфере присуще особое внутреннее свойство, отличающее ее от плоскости, а именно кривизна, выражающая само геометрическое существо и не зависящая от способа построения сферы в трехмерном пространстве.
Нарисовав треугольник на поверхности Земли, мы обнаружим заметное отличие его свойств от свойств треугольника на плоскости: сумма углов последнего в точности равна 180° (π радиан). Если же начертить треугольник с вершинами на Северном полюсе, в городах Кито (Эквадор) и Либревиль (Габон), то получится треугольник с тремя прямыми углами, сумма которых будет равна 270°!
Такое расхождение не позволяет печатать достоверных земных атласов на плоских листах. Кстати, согласно известной теореме сферической геометрии, сумма внутренних углов треугольника α, β, γ, σменьшенная на 180°, пропорциональна площади треугольника:
α + β + γ – π = Οлощадь / (Радиус сферы) 2= A / R 2
В этой формуле все углы берутся в радианах. в случае рассмотренного земного треугольника мы, кстати, имеем
α = β = γ = 90° = π/2
оттуда
A = R 2(3π/2 – π) = π R 2/2 = 4π R 2/8
Площадь, как мы видим, становится равной одной восьмой всей сферической поверхности. Действительно, треугольник с тремя прямыми углами занимает один октант сферы. Приведенную формулу можно представить в следующем виде:
1 / R 2= (α + β + γ – π) / Площадь
по этой формуле можно вычислить 1/ R 2, т.е. «гауссову кривизну», зная площадь треугольника и его углы, т.е. величины, которые можно измерить, просто гуляя по Земле, не привлекая никаких сведений о внешнем пространстве.
Все эти представления были обобщены Риманом на случай пространств любой размерности; тогда место величины 1/ R 2занимает знаменитый тензор Римана, учитывающий изменение кривизны по всем направлениям.
Кривизна и материя
Выдающаяся идея Эйнштейна состояла в том, чтобы связать эту кривизну с распределением вещества в пространстве. Согласно Эйнштейну, пространство обладает кривизной, а мы до сих пор ее не замечали, потому что она мала и проявляется только через гравитационные эффекты.
Особенно наглядной является картина пространства, предложенная Эддингтоном. Он сравнивал пространство с хорошо натянутым эластичным полотнищем, которое в нормальном состоянии лежит целиком в плоскости. Если положить на полотнище тяжелые шары (символизирующие небесные тела), то оно искривится, изменив при этом свою геометрию. Каждый из двух находящихся рядом шаров стремится скатиться в яму, образованную соседом. Так, через посредство полотнища между шарами появляется сила взаимодействия, аналогичная силе тяготения. Действительно, в общей теории относительности силы тяготения возникают за счет искривления окружающего пространства. Между кривизной пространства и распределением вещества существует соотношение вида 1/ R 2= ( G / c 2)·ρ.
Читать дальшеИнтервал:
Закладка: