Анатолий Томилин - Занимательно о космологии

Тут можно читать онлайн Анатолий Томилин - Занимательно о космологии - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-cosmos, издательство Издательство ЦК ВЛКСМ «Молодая гвардия», год 1971. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Занимательно о космологии
  • Автор:
  • Жанр:
  • Издательство:
    Издательство ЦК ВЛКСМ «Молодая гвардия»
  • Год:
    1971
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    4.75/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Анатолий Томилин - Занимательно о космологии краткое содержание

Занимательно о космологии - описание и краткое содержание, автор Анатолий Томилин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга очерков и новелл в трех частях и десяти главах про людей и достижения великой науки о строении и развитии вселенной от древности и до наших дней, сочиненная и списанная со многих источников автором Анатолием Томилиным в году 1971 в городе Ленинграде.

Занимательно о космологии - читать онлайн бесплатно полную версию (весь текст целиком)

Занимательно о космологии - читать книгу онлайн бесплатно, автор Анатолий Томилин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Вот когда пришло прозрение для всех неверующих Вот когда Бельтрами смог - фото 58

Вот когда пришло прозрение для всех неверующих. Вот когда Бельтрами смог воскликнуть столь желанное «смотри» и указать на чертеж. Псевдосфера-поверхность, находящаяся в привычном эвклидовом пространстве, являлась пресловутой «воображаемой» плоскостью Лобачевского. Но если такая плоскость (или двухмерное пространство) существует, то и ее геометрия не может быть ложной.

Мемуар Бельтрами совершил настоящий переворот. Имя Лобачевского озарилось сиянием славы. Увы, посмертно.

К сожалению, нарисовать или представить наглядно трехмерное пространство, подчиняющееся аксиомам геометрии Лобачевского, невозможно. У автора не хватает фантазии даже на аналогии. А отсутствие таковых в специальной литературе не позволяет прибегнуть к заимствованию. Придется воспользоваться единственным выходом — логикой…

Двухмерное пространство нулевой кривизны — плоскость. Та же нулевая величина кривизны определяет и эвклидово пространство, отличающееся от плоскости лишь наличием еще одного измерения.

Двухмерное пространство отрицательной кривизны — плоскость Лобачевского. Та же отрицательная величина кривизны определяет и неэвклидово пространство Лобачевского, отличающееся от плоскости Лобачевского лишь наличием еще одного измерения.

Представить себе его наглядно — трудно, но математически оно описывается безукоризненно. Кривизну пространства можно измерить опытным путем. И тогда в пространстве отрицательной кривизны сумма углов треугольника будет зависеть от величины его сторон и составлять меньше 180°. Через точку, лежащую вне «прямой», можно будет провести не одну, а целый пучок «прямых», не пересекающихся с данной, и так далее и тому подобное. Все так, как предсказывал еще в 1826 году Николай Иванович Лобачевский на заседании физико-математического отделения Казанского университета.

Мемуар Бельтрами возродил интерес к неэвклидовой геометрии. Появляется множество работ, у псевдосфер обнаруживаются некоторые особенности, которыми плоскость Лобачевского не обладает. Математики предлагают другие модели и другие интерпретации не только плоскости, но и пространства Лобачевского. Об одной из них, забегая по времени вперед, автор собирается поведать.

Представим себе поезд, мчащийся по рельсам. Вдоль состава, в направлении движения в вагон-ресторан, идет пассажир. Чему равна его скорость относительно пролетающих за окнами полустанков? Все просто — сумме скоростей поезда и его движения вдоль вагона.

На обратном пути его движение уже не столь прямолинейно. Пошатываясь, он двигается под разными углами к направлению движения поезда. Теперь его скорость относительно тех же полустанков равна разности скоростей. Но не просто от скорости поезда в 120 км/час нужно отнять 2 км/час, которые он преодолевает, добираясь до своего купе. Нет, полная скорость определится как векторная разность. А сложение и вычитание векторов производится по правилу параллелограмма.

Мы вспоминаем о Пифагоре и приходим к мысли, что законы сложения скоростей подчиняются правилам эвклидовой геометрии. Или, как принято говорить среди специалистов, геометрия пространства скоростей — эвклидова. Впрочем, такое заявление — спекуляция чистой воды. Решить, какой геометрией является геометрия пространства скоростей, должен опыт. И вот опыт-то и обнаружил в пространстве скоростей первое противоречие со свойствами эвклидовой геометрии. Случилось это так.

В 1877 году американские физики Майкельсон и Морли поставили эксперимент, который обещал просветить физику в отношении противоречивых свойств мирового эфира. Автору пока не хотелось бы вдаваться в подробности опыта и задач, которые ставили перед собой экспериментаторы. Это увело бы повествование слишком далеко в сторону. Сейчас нам важно то, что в опыте сравнивалась скорость света Солнца в двух направлениях: с востока на запад — вдоль и с севера на юг — поперек движения Земли по орбите.

Сумма двух векторов, совпадающих по направлению, всегда больше суммы тех же векторов, направленных под углом друг к другу. И потому Майкельсон и Морли ожидали, что скорость света в сумме со скоростью движения Земли по разным направлениям даст разные величины. Каково же было их изумление, когда оказалось, что, с чем бы ни складывалась скорость света, она всегда остается одной и той же.

Значит, законы Эвклида для сложения скоростей не годятся! Значит, геометрия пространства скоростей неэвклидова. Забегая еще вперед, скажем, что в 1908 году немецкий математик Клейн обнаружил, что геометрия скоростей в точности совпадает с геометрией Лобачевского. «Из всех неэвклидовых геометрий, — пишет Я. А. Смородинский, — геометрия Лобачевского оказалась самой реальной, в то время как „реальная“ эвклидова оказалась лишь приближенной моделью».

Удивительные пространства Георга Фридриха Бернгарда Римана

Но продолжим историю конструирования новых миров, начатую нашим великим соотечественником.

Осенью 1853 года на математический факультет Геттингенского университета никому не известный доктор наук Риман подал конкурсную работу на соискание должности приват-доцента. По существующим правилам, кандидат должен был предложить еще три темы для пробной лекции. Глава факультета утверждал одну из них, и после прочтения лекции кандидатом совет окончательно решал вопрос о пригодности соискателя к преподавательской работе.

В Геттингене математический факультет возглавлял Гаусс. Он знал Римана еще по докторской диссертации. И существует мнение, что побаивался гения молодого человека, видя в нем равного себе… Риман представил на рассмотрение три темы. Две из них не вызывали ни у кого ни малейшего сомнения. Третья же, посвященная основам геометрии, была абсолютно «темной лошадкой». Впрочем, Риман и не собирался выбирать ее в качестве темы пробной лекции. Обычно руководитель факультета утверждал самую первую тему из представленного списка, и на этом дело заканчивалось. Гаусс избрал третью.

Известный немецкий математик Вебер пишет: «Гаусс не без умысла выбрал именно данную тему из трех предложенных Риманом. Он сам признавался, что ему страстно хотелось услышать, как такой молодой человек сумеет найти выход из столь трудной игры».

Риману понадобилось почти полгода для окончания работы над вопросами, лишь намеченными названием темы. И вот наконец «Геттингенский Колосс» назначает заседание коллегии…

Лекция Римана называлась «О гипотезах, лежащих в основании геометрии». Докладчик рассматривал геометрию в наиболее обобщенном виде, как учение о непрерывных многообразиях не только привычных нам трех измерений, но и любых других n измерений. Если в таких многообразиях определено или задано расстояние между бесконечно близкими их элементами, то есть известна метрика, то Риман называл такие многообразия пространствами, характеризуя их свойства кривизной.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Анатолий Томилин читать все книги автора по порядку

Анатолий Томилин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Занимательно о космологии отзывы


Отзывы читателей о книге Занимательно о космологии, автор: Анатолий Томилин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x