Анатолий Томилин - Занимательно о космологии
- Название:Занимательно о космологии
- Автор:
- Жанр:
- Издательство:Издательство ЦК ВЛКСМ «Молодая гвардия»
- Год:1971
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Анатолий Томилин - Занимательно о космологии краткое содержание
Книга очерков и новелл в трех частях и десяти главах про людей и достижения великой науки о строении и развитии вселенной от древности и до наших дней, сочиненная и списанная со многих источников автором Анатолием Томилиным в году 1971 в городе Ленинграде.
Занимательно о космологии - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Здесь, пожалуй, уместно немножко отступить в прошлое. Мысли о возможности существования у пространства не трех, а четырех измерений появились в математике очень давно. Историки отыскивают их еще во времена Диофанта, в 250 году до нашей эры. В более отчетливой форме высказывает ее Абу-л-Вафа Мухаммед ибн Мухаммед ал-Бузджани, уроженец Хоросана, работавший в X веке при дворе Бундов в Багдаде. Затем время от времени идеи о возможности обобщения пространственного измерения с трехмерного на четырехмерное и больше возникали у некоторых европейских математиков, вызывая недоверие у окружающих. Так было, пока в 1788 году французским математик Даламбер не присоединил к пространственным координатам x , y и z четвертую координату — время t . Правда, эта последняя не пользовалась равными правами со всеми остальными. Если в пространстве можно двигаться в любом направлении, то дорога времени имеет знак одностороннего движения: от прошлого к настоящему и в будущее. Но не наоборот, дабы не нарушать принципа причинности, на котором основан мир. Тем не менее после Даламбера идея четвертого измерения пространства получила развитие в работах многих математиков. А затем пришла пора и не только четырехмерного, но и пяти-, и шести-, и вообще n -мерных пространств.
Дотошного читателя может заинтересовать вопрос: кому и зачем могут понадобиться подобные фантастические, непредставимые наглядно построения абстрактной математики? Дело в том, что отношения, установленные многомерной геометрией, могут истолковываться не обязательно как пространственные, а как совсем другие отношения между объектами, связанными законами многомерья. Один из возможных примеров приводит Э. Кольман в книге «Четвертое измерение».

Представьте себе, например, облачко газа, состоящее из n молекул. Каждая молекула этого газа в любой момент времени занимает некое положение в пространстве, определяемое тремя координатами. Но, кроме того, каждая молекула обладает еще определенным импульсом (равным произведению массы на мгновенную скорость). Импульс же имеет тоже три слагаемых, три проекции на оси координат. Таким образом, для определения состояния материальной точки — молекулы потребуется шесть характеризующих ее величин. Иначе говоря, движение каждой молекулы можно теперь описать как движение точки в шестимерном пространстве. А изменение состояния всей системы из n молекул — как движение некой материальной точки в 6 n -мерном фазовом пространстве. Причем линия траектории этого движения, называемая «фазовой траекторией», будет описывать изменение состояния всей системы газовых молекул. Такой метод многомерного фазового пространства применяется в различных науках: в механике и термодинамике, в физической химии и квантовой механике.
Риман изложил в своей лекции принципы многомерной геометрии в наиболее обобщенном виде. Он положил в основу своих исследований гауссовский элемент длины, то есть бесконечно малое расстояние между двумя точками. Некогда эта идея позволила Гауссу построить внутреннюю геометрию искривленной поверхности. На этом Гаусс остановился. Риман же перенес этот метод, эту идею с поверхности, или иначе с пространства двух измерений, на пространства трех и более измерений, обобщив и построив новые удивительные геометрии удивительных миров.
«Я поставил перед собой задачу сконструировать понятие многократно протяженной величины», — говорил Риман и набрасывал перед слушателями причудливые контуры «гиперпространств». Он рассуждает, что ежели могут существовать разные поверхности, то есть двухмерные пространства — плоские, эллиптические или такие поверхности, как плоскость Лобачевского, характеризующиеся различной по знаку и по величине гауссовой кривизной, то так же могут существовать и трехмерные или трижды протяженные величины и n -мерные. Причем в свете этих обобщений геометрия Эвклида и геометрия постоянной отрицательной кривизны Лобачевского, так же как и геометрия пространств постоянной положительной кривизны, которую мы теперь называем геометрией Римана, являются лишь частными случаями. Рассматривая вопрос о пространстве положительной кривизны, Риман распространил на него все свойства сферической поверхности. Так же как на сфере «прямые» линии не могут продолжаться бесконечно, потому что замкнуты сами на себя, в сферическом пространстве «прямая» линия должна быть замкнутой.
Сегодня можно предложить такой пример: обладай наше пространство положительной кривизной, луч света или космический корабль, посланные с Земли по прямой, через n лет непременно бы возвратились в исходную точку. А будь эта кривизна такой же большой, как в фантастических рассказах, человек всегда видел бы перед собой собственный затылок…
Получалось, что сферическое пространство должно быть конечно и безгранично, как конечна и безгранична поверхность любого шара. Да, привыкнув к бесконечности пространства Эвклида, такую конструкцию представить себе было трудно даже мысленно.
Гаусс был потрясен глубиной мысли Римана. Кандидат был принят на службу и через три года занял должность профессора.
Тридцать один год исполнилось сыну бедного сельского пастора из Брезеленце, когда он впервые получил возможность думать только о науке.
Содержание пробной лекции не было напечатано. Риман не стремился к публикациям. Тем более этой работы, которая, как он видел сам, была доступна весьма ограниченному кругу людей. Высказав в общем виде свои идеи, он больше не возвращается к ним. Он много работает. Пишет несколько блестящих математических мемуаров. Берлинская и Баварская академии наук избирают его своим членом. Затем следует признание и со стороны Парижской академии и Лондонского королевского научного общества… Но в разгар славы на тридцать девятом году жизни «профессиональный» недуг бедняков и интеллигентов XIX столетия — чахотка обрушивается на него. Теперь у Римана есть средства, и он уезжает в Италию. Но год, проведенный под голубым южным небом, уже не в силах ничего изменить. В сорок лет второй, после Гаусса, немецкий математик умер.


Часть третья
Идеи
Глава седьмая

XX век начинался бурно. По дорогам и улицам городов покатили, пугая лошадей, громыхающие, изрыгающие удушливый дым автомобили. В небе затрещали, зафыркали моторы первых аэропланов. В качестве главной силы технического прогресса утвердилось электричество. Наступило время чудес и для науки.
Читать дальшеИнтервал:
Закладка: