Спартак Ахметов - Беседы о геммологии

Тут можно читать онлайн Спартак Ахметов - Беседы о геммологии - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-geo, издательство Молодая гвардия, год 1989. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Беседы о геммологии
  • Автор:
  • Жанр:
  • Издательство:
    Молодая гвардия
  • Год:
    1989
  • Город:
    Москва
  • ISBN:
    5-235-00499-
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Спартак Ахметов - Беседы о геммологии краткое содержание

Беседы о геммологии - описание и краткое содержание, автор Спартак Ахметов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Трудно найти человека, которого так или иначе не интересовали бы драгоценные камни. В самих названиях — алмаз «Шах», «Рубин Черного принца», лунный камень, шайтанский переливт, тигровый глаз — ощущается тайна или научная загадка. Сначала человек находил самоцветы в земле, потом научился выращивать их в лаборатории. Как это происходит? Для чего нужны самоцветы? Чем они привлекали издревле внимание ученых и писателей? Как используются кристаллы в современной науке и технике? Обо всем этом увлекательно рассказывает книга, автор которой четверть века занимается выращиванием и исследованием монокристаллов.

Беседы о геммологии - читать онлайн бесплатно полную версию (весь текст целиком)

Беседы о геммологии - читать книгу онлайн бесплатно, автор Спартак Ахметов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Итак, из одного тупика мы попали в другой. В подобном случае математики рекомендуют искать выход в новом измерении. Иными словами, надо забыть о металлических каналах связи и придумать что-то принципиально иное.

Представьте стеклянный стержень. С одного конца в него входит пучок световых лучей. Их дальнейшая судьба зависит от угла падения. Если луч попадет в стержень под углом, большим угла полного внутреннего отражения, то он преломится на границе стекло — воздух и безвозвратно покинет стержень. Другой луч попадает в стержень под углом, меньшим угла полного внутреннего отражения. Став пленником стекла, он будет и дальше отражаться от внутренних стенок, пока не покинет стержень с другого конца.

Мы уже говорим о передаче информации по световодам. Преимущества такой связи неоспоримы. Во-первых, скорость передачи информации стала равна скорости света. Во-вторых, полезная полоса частот подскочила до 10 14герц (то есть один световод может обеспечить свыше ста миллиардов каналов связи). В-третьих, вес стекла значительно меньше веса такого же объема металла. Однако имеются и недостатки. Металлическую проволоку можно намотать на барабан, а попробуйте хоть чуть-чуть изогнуть стеклянную палочку! Кроме того, количество световых лучей, покидающих стержень, настолько велико, что до его конца (при достаточной протяженности) почти ничего не доходит. К этому следует добавить и рассеяние света из-за наличия в стекле примесей железа, меди, воды и т. п.

Кажется, что перечисленные технические трудности непреодолимы. Это не так. Стеклянный стержень, утонченный до диаметра 100 микрометров, превращается в нить, которую можно гнуть как угодно и даже завязывать узлами. А для удержания всех лучей внутри этой нити придумали вот что. Луч света покидает световод из-за большой разницы между показателями преломления стекла и воздуха. Если центральную жилу окружить материалом с более высоким показателем преломления, то луч света так и не сможет вырваться наружу.

Остается рассказать, каким образом можно получить сверхтонкое и двухслойное кварцевое стекло без примесей железа, меди и воды.

Понятно, что для выплавки сверхчистого стекла требуется и сверхчистая шихта. В природе наименьшее количество примесей содержится в бразильском кварце. Однако в волокне, полученном из него, затухание волн все-таки слишком велико. Поэтому прибегли к синтетическим методам. В одном из них парогазовую смесь тетрахлорида кремния и водорода подают в факел водородно-кислородного пламени (почти аппарат Вернейля). В результате образуются линейные молекулы кремнезема, которые соединяются друг с дружкой в длинные цепочки. Этот промежуточный материал плавят и после охлаждения получают блоки чистейшего кварцевого стекла. Какова его чистота? Достаточно сказать, что на миллиард атомов кремния приходится всего один атом железа или другой примеси! Вот уж поистине драгоценный камень!

В современных световодах центральная жила толщиной 10 микрометров покрыта оболочкой из чистого кварцевого стекла толщиной до 150 микрометров. Для создания разницы в показателях преломления центральную жилу изготавливают из кварцевого стекла с примесью оксида титана, который значительно улучшает свойства световода. Например, коэффициент термического расширения становится нулевым. Иными словами, при любой температуре длина нити постоянна. Это очень важно в тех случаях, когда длина световода превышает десятки километров.

У древних греков был миф о лидийской девушке Арахне, превращенной богиней Афиной в паука. Арахна могла свить самую тонкую нить и сплести из нее кружево немыслимой красоты. Но вряд ли и она смогла бы изготовить двухслойную паутину.

Процесс на современном заводе начинается с того, что из слитков кварцевого стекла делают стержни (штабики). Их помещают в специальную установку, в которой один конец штабика нагревается до плавления. Вытягиваемая нить проходит через узкое отверстие и наматывается на барабан. Для вытягивания двухслойного световода применяют сдвоенные тигли. В середине дна меньшего тигля имеется отросток, оканчивающийся фильерой. Этот отросток располагается точно над фильерой большого тигля. Дальнейшее понятно: большой тигель заполняется чистым кварцевым стеклом, меньший — стеклом с добавкой оксида титана. Вытекая одновременно, оба стекла застывают, образуя двухслойную нить. Ее покрывают защитной оболочкой, и световод готов.

На таких световодах уже работают телефонные линии передачи на расстояния до 3000 километров. Их ждут промышленные предприятия, где станками и автоматизированными комплексами управляют ЭВМ. В 1990 году должна войти в строй световодная линия связи между Европой и Америкой, проложенная по дну Атлантического океана. Она расширит контакты между континентами.

По кварцу бежит звук.Как вы думаете, почему у нас цветные телевизоры появились позже черно-белых? Правильно, по техническим причинам. Однако что это за причины?

Старые москвичи помнят коммунальные квартиры 50-х годов и телевизионный приемник КВН-49. Возле крошечного экрана собирались не только хозяева квартиры, но и соседи по этажу. Первых дикторов — прелестных Нину Кондратову и Валю Леонтьеву — приветствовали как близких людей. Каждая телевизионная передача живо обсуждалась. Любителей и почитателей набивалось в комнату столько, что для цветного варианта телевизионного приемника места не оставалось. По тем временам к нему полагался кабель длиной 13 километров. Вы спросите, откуда взялась такая цифра?

В цветном телевизоре за передачу на экран всех цветов радуги ответственны несколько узлов. Один из них — линия задержки, и нужна она вот для чего. Изображение на экране формируется из 625 строк, каждая из которых разворачивается в течение 64 микросекунд (напомним, что одна секунда состоит из миллиона микросекунд). В приемнике для формирования цветоразностных сигналов необходимо одновременное присутствие двух цветовых сигналов. Для их совпадения во времени и используется ультразвуковая линия задержки (УЛЗ): задержка производится как раз на необходимые 64 микросекунды.

Попробуем сделать линию задержки из медной проволоки. Телевизионный сигнал будет распространяться по ней со скоростью примерно двести тысяч метров в секунду или 0,2 километра в микросекунду. Для того чтобы задержать его на нужное количество микросекунд, требуется кабель длиной почти 13 километров. Естественно, в коммунальной квартире места для него не найдется.

Конечно, это шутка. Однако поиск материалов, способных служить линиями задержки, был делом серьезным. Решение нашлось только после того, как научились трансформировать электромагнитную волну в звуковую. Как известно, акустические волны распространяются в твердых телах со скоростью примерно 0,2 сантиметра в микросекунду. Для задержки сигнала на 64 микросекунды требуется стержень длиной всего-навсего 13 сантиметров. Он свободно размещается в коробке телевизионного приемника.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Спартак Ахметов читать все книги автора по порядку

Спартак Ахметов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Беседы о геммологии отзывы


Отзывы читателей о книге Беседы о геммологии, автор: Спартак Ахметов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x