Рудольф Юбельт - Определитель минералов

Тут можно читать онлайн Рудольф Юбельт - Определитель минералов - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-geo, издательство ИЗДАТЕЛЬСТВО «МИР», год 1978. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Определитель минералов
  • Автор:
  • Жанр:
  • Издательство:
    ИЗДАТЕЛЬСТВО «МИР»
  • Год:
    1978
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3.9/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Рудольф Юбельт - Определитель минералов краткое содержание

Определитель минералов - описание и краткое содержание, автор Рудольф Юбельт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Вторая книга из серии определителей геологических объектов, выпускаемой в ГДР (первая — «Определитель горных пород» — в русском переводе вышла в издательстве «Мир» в 1977 г.). Книга содержит краткие сведения по минералогии и кристаллографии, дает представление о внутреннем строении Земли, ее составе. Описание 205 главнейших природных минералов, в том числе рудных, составлено по единой схеме и сопровождается диагностическими таблицами.

Четкий и легкодоступный для понимания язык книги делает ее ценной не только для геологов всех специальностей, но также для массового читателя — туристов, школьников старших классов, студентов и всех любителей камня.

Определитель минералов - читать онлайн бесплатно полную версию (весь текст целиком)

Определитель минералов - читать книгу онлайн бесплатно, автор Рудольф Юбельт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Примеры: 432 — кубическая, 422 — тетрагональная, или 23 — кубическая, 32 — тригональная.

Следует, однако, показать яснее, что кристаллографические сингонии определяются непосредственно симметрией кристаллов. Наличие тетрагональной оси симметрии предопределяет условие а=b, угол между этими осями равен 90°. Ведь если вращение на 90° должно привести к идентичной картине, необходимо, чтобы отрезки по обеим осям были одинаковы. Аналогичные соотношения имеют место в гексагональной сингонии. В кубической сингонии соответственно три двойные или четверные оси симметрии связаны с четырьмя тройными осями, располагающимися вдоль пространственных диагоналей куба; обе системы осей пересекаются под характеристическим углом 54°44′.

Следует поставить важный вопрос, обсуждение которого еще более прояснит соотношения между сингонией, классом симметрии и элементом симметрии. Расположены ли элементы симметрии в кристалле произвольно или и здесь выявляются закономерные соответствия? Оказывается, что элементы симметрии тесно связаны с кристаллографическими осями. Для отдельных сингонии установлены следующие главные направления (параллельные лучу зрения):

Сингония Главные направления
Триклинная Отсутствуют
Моноклинная Ось b
Ромбическая Ось а, ось b, ось с
Тетрагональная Гексагональная (Тригональная) Ось с, оси а, биссектриса угла между осями а
Кубическая Оси а, пространственные диагонали куба, диагонали граней куба

Главными направлениями в кристалле называются направления, в которых располагаются элементы симметрии. Отсюда следует, что элементы симметрии могут находиться только в строго определенных направлениях.

В триклинной сингонии главное направление не установлено, поскольку придавать направление оси идентичности 1 или 1, т. е. точке, было бы бессмысленно. В моноклинной сингонии достаточно одного направления и для класса 2/m, поскольку эта комбинация оси и плоскости располагается в кристалле таким образом, что нормаль (перпендикуляр) к двойной оси ориентирована параллельно плоскости симметрии. Для других сингонии необходимо указывать три главных направления, хотя в кристаллах этих сингонии может присутствовать большое количество направлений, но два или даже три из них являются равноценными (например, в тетрагональной сингонии а=b или в кубической а = b = с), так что указание одного из таких направлений включает в себя и остальные, ему адекватные.

Поскольку каждый класс симметрии подчиняется какой–либо одной сингонии, с помощью главных направлений определяется положение элементов симметрии в пространстве. Само собой разумеется, что существует и обратная связь, в соответствии с которой кристаллографическим осям отвечают определенные элементы симметрии. Примеры:

Класс симметрии Сингония Положение элементов симметрии
2/m Моноклинная 2 || b m_ |_ b
2/m 2/m 2/m Ромбическая 2 || а 2 ||b 2 || с
4/m 2/m 2/m Тетрагональная т _ |_ a m_ |_ b m_ |_ с 4 || с 2 || а, b 2 || биссектрисам углов между осями а m_ |_ c т_ |_ a, b m _ |_ биссектрисам углов между осями а
6 Гексагональная 6||с
432 Кубическая 4||а, b , с 3 || четырем пространственным диагоналям куба 2 || шести диагоналям граней куба

|| —параллельно

_ |_ — перпендикулярно

Пример класса 6 показывает, что не в каждом классе симметрии все главные направления соответствующей сиигонии сопровождаются элементами симметрии.

Внешнюю огранку кристаллов составляют грани, ребра и углы, которые связаны между собой соотношением Эйлера: число граней+число углов=число ребер +2.

Подобно элементам симметрии следует привести также грани и ребра кристаллов в соответствие с кристаллографическими осями и тем самым с элементами симметрии.

Легко представить, что каждая грань, рассматриваемая в пространстве, заключенном в систему координатных осей, должна отсекать, пересекать одну, две или три оси. Различают ряд положений граней, представленных на рис. 6.

Ребра кристаллов также обозначаются тройным индексом: ось а и все параллельные ей ребра имеют индекс [100], ось b — [ 010] и ось с — [ 001].

Общий символ грани, пересекающей все три оси, — ( hkl), ребра — [ uvw]. Обратите внимание на различную форму скобок!

Необходимо упомянуть еще одну особенность. Если грань отсекает на оси а одну часть, на оси b — две части и располагается параллельно оси с, то ее индекс будет не (120), а (210). Для индицирования граней, согласно Миллеру, применяются обратные значения для длин отрезков по осям. Грань отсекает отрезки a, b и с в отношении 1: 2: оо. Обратные значения составляют 1/1: 1/2:1/оо, а приведенные к целым числам — (210).

Рис 6 Рис 7 Для индицирования ребер наоборот используется прямое - фото 26 Рис. 6. Рис 7 Для индицирования ребер наоборот используется прямое отношение - фото 27 Рис. 7.

Для индицирования ребер, наоборот, используется прямое отношение отрезков. Благодаря применению обратных и прямых отрезков достигается одинаковое написание индексов для некоторых граней и нормалей к ним (рис. 7).

Для грани в общем положении принимается индекс (hkl), а для соответствующих ребер — [uvw]. Какие числа скрываются за этими буквенными обозначениями? Это малые числа (целые), часто 1 и 0, реже 2. Числа больше 2 почти не появляются в обозначениях индексов праней и ребер. Тот факт, что длины отрезков, отсекаемых гранями или ребрами на трех основных осях [Отрезки, отсекаемые гранью по кристаллографическим осям, в отечественной литературе принято называть параметрами этой грани. — Прим. перев. ], относятся между собой как малые целые рациональные числа, носит название в кристаллографии закона рациональности отношений параметров. Необходимо подчеркнуть, что абсолютные значения величин, между которыми определяют отношения, не во всех случаях одинаковы. Для ромбической сингонии а=/=b=/=с. Это означает для грани (111) ромбического кристалла различные абсолютные значения отрезка, отсекаемого по каждой оси, но равное количество этих отрезков по а, Ь и с. Так что получается отношение 1 а:1b:1с. По равенству или неравенству величин или длин отрезков по a, b и с определяют кристаллографические сингонии.

Прямое отношение а: b: с, упрощенно а: 1: с, обозначается как геометрическое осевое отношение. В кубической сингонии оно составляет, естественно, 1: 1: 1, в тетрагональной и гексагональной 1: 1: с, а начиная с ромбической и в сингониях с более низкой симметрией — а: 1: с. Осевое отношение является константой вещества. Если мы знаем это отношение и установили, что оно равно таковому известного минерала, тогда с полной уверенностью можно говорить об идентичности обои: минералов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Рудольф Юбельт читать все книги автора по порядку

Рудольф Юбельт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Определитель минералов отзывы


Отзывы читателей о книге Определитель минералов, автор: Рудольф Юбельт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x