Рудольф Рэфф - Эмбрионы, гены и эволюция
- Название:Эмбрионы, гены и эволюция
- Автор:
- Жанр:
- Издательство:Мир
- Год:1986
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Рудольф Рэфф - Эмбрионы, гены и эволюция краткое содержание
В книге американских авторов излагаются факты и идеи о связи генетики, эмбриологии и эволюции. Основное внимание уделено представлению о том, что эволюция идет по преимуществу путем отбора значительных перестроек морфологии, обусловленных мутациями регуляторных генов.
Для специалистов по молекулярной биологии, эмбриологов, генетиков, эволюционистов, для студентов и преподавателей биологических факультетов.
Эмбрионы, гены и эволюция - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Ввиду сложности геномов эукариот эволюция этих геномов слагается из множества эволюционных событий. Изменения генома могут иметь ряд различных последствий. В табл. 3-1 представлен далеко не полный перечень событий и их последствий, участвующих в процессе эволюции многоклеточных животных.
Таблица 3-1. Разнообразие событий, происходящих при эволюции генома
Событие | Последствия | ||
---|---|---|---|
структура ДНК | структура белка | фенотип | |
В структурных генах | |||
Замена нуклеотида (непроявляющаяся) | Изменение последовательности оснований | Замены аминокислоты не происходит | Никаких или незначительные |
Замена нуклеотида (консервативная) | То же | Замена аминокислоты на сходную | То же |
Замена нуклеотида (проявляющаяся) | То же | Замена аминокислоты | От никаких до утраты или изменения функции |
Делеция | Утрата основания(й) | Делеция аминокислоты (аминокислот), нонсенс-белок или преждевременный обрыв белковой цепи | От незначительных до утраты функции |
Дупликация, за которой следует замена нуклеотидов в дупликатном гене | Дупликация последовательности оснований; изменение последовательности в дупликатном гене | Новая (сходная) аминокислотная последовательность | Появление новой функции с сохранением прежней функции |
Слияние генов | Утрата промежуточных оснований | Объединение полипептидов | Никаких, утрата функции или новая функция |
В некодирующих последовательностях | |||
Замена нуклеотидов в высокоповторяющихся последовательностях сателлитной ДНК | Изменение последовательности оснований | Никаких | ? |
Замена нуклеотидов в спейсерных последовательностях между генами | То же | То же | Никаких |
Замена нуклеотидов в некодирующих умеренно-повторяющихся последовательностях | То же | То же | ? |
Замена нуклеотидов в некодирующих последовательностях без повторов | То же | Никаких | ? |
Замена нуклеотидов в интронах | То же | От никаких до включения аминокислот | От никаких до утраты или изменения функции |
Замена нуклеотидов в промоторах или других регуляторах | То же | Никаких | Изменение уровня или сроков экспрессии |
Изменение частоты последовательности | |||
Изменение частоты сателлитной последовательности | Изменение числа копий существующей последовательности | Никаких | ? |
Изменение частоты умеренно-повторяющейся последовательности | То же | То же | ? |
Изменение плоидности | Увеличение большинства или всех последовательностей в одинаковое число раз | То же | Никаких или увеличение размеров; изолирующий механизм |
Перемещение последовательностей в новые участки генома | |||
Включение интрона в структурный ген | Новая локализация предсуществовавшей последовательности | От никаких до включения аминокислот | От никаких до изменения функции |
Транспозиция цис- регулятора | То же | Никаких | Изменение уровня или сроков экспрессии |
Перемещение блоков сателлитной ДНК из одной хромосомы в другую | То же | То же | ? |
Более крупные изменения | |||
Инверсии и транслокации | То же | Никаких | Обычно никаких или незначительные; некоторое селективное преимущество в сохранении блоков генов |
Перенос генов от одного вида к другому | |||
Горизонтальный перенос генов между неродственными видами | Введение новой последовательности | Введение нового белка | От никаких до введения новой функции |
Первая группа событий охватывает большую часть классической молекулярной эволюции, т. е. модификации в кодирующих участках структурных генов. Такие события состоят в изменениях нуклеотидных последовательностей и во многих случаях приводят к изменению последовательности аминокислот в белке. Изменения белка могут варьировать от минимальных до довольно радикальных и (в экстремальных случаях) приводить к утрате функции или приобретению новых функций. Значительную долю нуклеотидных замен в структурных генах можно выявить только на уровне последовательности ДНК, потому что генетический код вырожденный и замена в кодоне третьего нуклеотида в большинстве случаев дает равноценный кодон, а следовательно, никакой замены аминокислоты не происходит. Некоторые замены консервативны: они приводят к замене одной аминокислоты на другую, с ней сходную. Например, замену одной гидрофобной аминокислоты - лейцина - другой гидрофобной аминокислотой - валином - можно выявить путем анализа аминокислотной последовательности в мутантном белке, однако на фенотипическом уровне она, вероятно, никак не проявится.
Эволюция структурных генов не ограничивается заменой нуклеотидов; в ней имеют место различные другие события, такие как делеции и слияния генов. Наиболее значительные изменения в эволюции новых белков состоят в дупликации какого-либо существующего гена, за которой следует дивергентная эволюция одной из дуплицировавшихся последовательностей с образованием близкого ей белка. Поскольку первоначальный ген при этом сохраняется, то в конечном итоге биохимические возможности организма возрастают благодаря добавлению нового белка; на фенотипическом уровне возникают аналогичные изменения, самые интересные из которых ведут к приобретению новых функций.
Наличие в геноме некодирующей ДНК - более загадочная проблема. Такие последовательности ДНК не кодируют белки, хотя в некоторых случаях они транскрибируются совместно со структурными генами. Эмпирически некодирующая ДНК делится на четыре группы. В первую группу входят некодирующие последовательности ДНК, роль которых мы понимаем лучше других - они служат спейсерами между структурными генами. Спейсеры, по-видимому, менее чувствительны к замене нуклеотидов, чем те структурные гены, которые ими разделяются. Вторая группа некодирующих последовательностей, открытая недавно и пока еще плохо изученная, - это внутригенные последовательности, получившие название интронов. Интроны - это последовательности ДНК, включенные в кодирующие участки структурных генов и нарушающие их непрерывность. Первичный транскрипт, получающийся при транскрибировании такого гена, содержит как кодирующие, так и интронные последовательности. Интронные последовательности удаляются при помощи специальных ферментов, осуществляющих процессинг РНК и превращающих первичные транскрипты в мРНК, содержащую непрерывную кодирующую последовательность. Интроны широко распространены у эукариот, у которых они содержатся как в ядерных генах, так и в генах органелл, но в генах прокариот они отсутствуют. Удивительно, что в некоторых случаях интронные последовательности значительно длиннее тех кодирующих последовательностей, которые они разрывают. Какими эффектами могут обладать мутации, возникающие в интронах, неизвестно, однако любые мутации, нарушающие правильное удаление интронных последовательностей из первичных транскриптов РНК, будут иметь серьезные последствия. К третьей группе некодирующих последовательностей относятся нетранскрибируемые регуляторные участки, такие как промоторы, к которым при инициации транскрипции прилежащего структурного гена должен присоединиться фермент РНК-полимераза, осуществляющая транскрипцию. Мутации, возникающие в этих участках, не вызывают изменений последовательности аминокислот в синтезируемых белках, но могут оказывать глубокое воздействие на степень экспрессии гена и на ее сроки. В последнюю, четвертую, группу входят последовательности, не имеющие известной функции. Мутации в этой ДНК приводят к изменениям последовательности нуклеотидов, но их фенотипические последствия неизвестны.
Читать дальшеИнтервал:
Закладка: