Борис Кудрявцев - О неслышимых звуках
- Название:О неслышимых звуках
- Автор:
- Жанр:
- Издательство:Военное Издательство Министерства обороны Союза ССР
- Год:1958
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Борис Кудрявцев - О неслышимых звуках краткое содержание
О том, что такое ультразвуковые волны, о способах их получения, свойствах и применении и рассказывает книга специалиста в области ультразвуков профессора доктора химических наук Бориса Борисовича Кудрявцева «О неслышимых звуках». subtitle
3 0
/i/51/718751/Grinya2003.png
0
/i/51/718751/CoolReader.png
О неслышимых звуках - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Это свечение и называют звуколюминесценцией.
Изучая звуколюминесценцию, советские исследователи В. Л. Левшин и С. Н. Ржевкин обнаружили много интересного. Оказалось, что если озвучивать глицерин или серную кислоту, возникает точно такое же свечение, как и в воде.
Однако когда для опытов взяли органические жидкости, такие, например, как бензол, этиловый спирт, нитробензол, свечение не появлялось.
Ученым удалось также установить, что с повышением температуры жидкости или при насыщении ее углекислым газом свечение прекращается.
В то же время присутствие в воде таких веществ, как поваренная соль, хлористый кальций, серная кислота, никак не сказывалось на характере свечения.
Что же является источником свечения?
Вы, наверно, уже догадываетесь, что источником свечения являются все те же кавитационные пузырьки. Наполняющие их газы и пары светятся под действием электрического разряда, подобно тому как светятся газосветные трубки, знакомые всем по световой рекламе.
Такое объяснение возникновения звуколюминесценции делает понятными многие особенности этого явления.
Растворенные в воде поваренная соль или серная кислота нелетучи, и потому молекулы этих веществ не будут встречаться в газах, наполняющих кавитационный пузырек, а следовательно, они не будут влиять и на свечение.
Наоборот, угольная кислота летуча и, попадая в кавитационные пузырьки, гасит свечение.
Повышение же температуры вызывает увеличение количества паров воды внутри пузырька, и тем самым затрудняет появление электрического разряда и, следовательно, препятствует свечению.
Предполагают, что свечение воды, наблюдаемое при ее озвучивании, может объяснять почернение фотографической пластинки под действием ультразвука.
Если неосвещенную фотографическую пластинку погрузить в дистиллированную воду и подвергнуть действию ультразвука, а затем проявить, то пластинка окажется почерневшей, как будто она была освещена. Степень почернения тем больше, чем больше интенсивность ультразвука. Этим попытались воспользоваться для получения изображения звуковой волны. На рис. 32 воспроизведена подобная ультразвуковая фотография фокусированной волны. Время действия ультразвука на фотопластинку равно 20 минутам. Надо еще раз напомнить, что освещение при получении этой фотографии отсутствовало, ультразвук сам вызвал почернение пластинки.

Фотографическое изображение ультразвуковой волны может возникать и в результате нагрева жидкости, который вызывается ультразвуковой волной.
Расскажем теперь об одной интересной попытке практического использования химического действия ультразвука.
Ультразвук заменяет времяНагревание, которым сопровождается поглощение ультразвука, и своеобразный характер движения отдельных частиц вещества в ультразвуковой волне приводят к тому, что озвучивание мощным ультразвуком вызывает ускоренное протекание сложных химических превращений, объединяемых под общим названием «старения» вещества.
Мы знаем, что при приготовлении высших сортов водок и вин их специально выдерживают, чтобы они «состарились» и приобрели ценные вкусовые качества.
Старение — медленный процесс, но старение водок и различных ликеров можно ускорить, подвергнув их действию ультразвука. Как оказалось, кондиционность водок и различных ликеров при этом значительно возрастает. После озвучивания напитки приобретают такие качества, которые без помощи ультразвука можно получить лишь в результате длительной выдержки их в специальных условиях. Однако для ускорения старения вин ультразвуком не пользуются, так как во многих случаях он ухудшает их качество — в винах увеличивается содержание кислоты.
В 1953 году советские ученые Ф. К. Горский и В. И. Ефремов открыли, что ультразвуки способны ускорять процесс старения не только жидкостей, но и твердых тел. Согласно их опытам старение алюминиевых сплавов, необходимое для того, чтобы сплав после закалки приобрел требуемую твердость, происходит под действием ультразвука приблизительно в 80 раз быстрее, чем в нормальных условиях. Это открытие может иметь большое практическое значение.
Глава 5.
ПОМОЩНИК ЧЕЛОВЕКА
Итак, ультразвук может разламывать мельчайшие частицы вещества — молекулы. Естественно ожидать, что с помощью мощного ультразвука удастся измельчить также различные жидкие или твердые тела, состоящие из многих миллиардов молекул.
Если в пробирку налить ртуть и воду, то более тяжелая ртуть расположится внизу, а вода сверху. Встряхнув пробирку, можно на мгновение заставить ртуть разбиться на мелкие капельки и перемешаться с водой. Но как только мы прекратим встряхивание, капельки ртути соберутся на дне и сольются в одну большую каплю. В пробирке вновь возникнут два слоя, разделенные резкой границей. Попробуем теперь пробирку опустить в мощный ультразвуковой фонтан. Пройдет всего несколько минут, и мы получим однородную серую массу, где уже нельзя различить отдельные слои. Капельки ртути здесь равномерно перемешаны с водой, как в молоке перемешаны с водою мельчайшие капельки жира.
Тем не менее, это не истинный раствор, в котором растворенное вещество измельчено до молекул. Хотя ультразвук дробит ртуть на мелкие частицы, им все же очень далеко до молекул. С помощью хорошего микроскопа можно различить и измерить отдельные капельки ртути. Они имеют в поперечнике несколько стотысячных долей сантиметра. Подобные капельки содержат еще сотни тысяч молекул, но они уже настолько малы, что не падают мгновенно на дно пробирки, а лишь медленно-медленно оседают. Даже через сутки остается еще сравнительно много мелких неосевших частиц. Такое подобие раствора называют эмульсией, если раздробленное вещество — жидкость, а сам процесс измельчения — диспергированием. Различные эмульсии находят самое разнообразное применение в технике, медицине, в быту.
При постройке дорог широко используют так называемые битумные эмульсии. Чрезвычайно разнообразны эмульсии, встречающиеся в пищевой промышленности, — это различные соусы и кремы, начинки для конфет, а также маргарин, который представляет собою охлажденную эмульсию масла, жиров и кислого молока. Широко применяются эмульсии в фармацевтической, текстильной и кожевенной промышленности, в сельском хозяйстве и т. д.
Промышленность заинтересована в получении эмульсий в возможно более короткий срок.
Известным советским ученым Сергеем Николаевичем Ржевкиным приготовлено с помощью ультразвука большое количество разнообразных эмульсий. Легко диспергируются (измельчаются) в воде бензол, парафин, различные масла. Особенно легко и быстро образуются эмульсии масел. Они очень устойчивы и лишь незначительно изменяются со временем.
Читать дальшеИнтервал:
Закладка: