Скотт Бембенек - Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали
- Название:Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Скотт Бембенек - Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали краткое содержание
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Давайте попытаемся совместить уравнение Дальтона и результаты исследования Гей-Люссака. Возьмем одинаковое количество атомов в равных объемах газа (при одинаковых температуре и давлении) в соответствии с законом Авогадро.
На рис. 12.1 у нас есть правильные величины объемов каждого газа, вовлеченных в химическую реакцию, как это определил Гей-Люссак, взаимодействующие по правилам уравнения Дальтона. Далее, так как мы используем закон Авогадро, количество атомов в каждом объеме должно быть одинаковым, но какое именно это количество — неважно.
По-видимому, в этой схеме есть неточность, поскольку в результате процесса у нас остаются атомы водорода. Это было бы нормально, если бы мы знали, что так и происходит, но экспериментальные свидетельства показывают, что нет. Давайте исключим из нашего процесса уравнение Дальтона — в конце концов, это были всего лишь его размышления. Вместо этого допустим, что атомы одного и того же элемента в газообразном состоянии могут объединиться, чтобы формировать молекулы, как считал Авогадро, а не существуют в виде отдельных атомов, как того требовал Дальтон.

Рисунок 12.1. Следуя теории Гей-Люссака, мы берем два объема водорода, объединяющихся с одним объемом кислорода для создания одного объема водяного пара. Далее мы применяем уравнение Дальтона для объединения объемов. Поскольку объем, давление и температура объемов одинаковы, мы применяем закон Авогадро, сохраняя одинаковое число «частиц», которые в этом случае являются отдельными атомами в каждом объеме.
А именно, давайте предположим, что в водороде и кислороде два отдельных атома объединяются, чтобы сформировать двухатомные молекулы H 2и O 2соответственно, а не просто существуют как отдельные атомы H и O. Теперь вернемся к нашему эксперименту, используя только результаты Гей-Люссака для объединенных объемов и закон Авогадро (рис. 12.2).
Так как мы исключили уравнение Дальтона, мы просто возвращаемся к закону Авогадро и используем одинаковое количество частиц в каждом объеме. Единственное оставшееся у нас требование Гей-Люссака напоминает нам, что все атомы водорода и кислорода превратятся в итоге в водяной пар; другими словами, у нас не может остаться свободных атомов, как было прежде. И вот тут мы наблюдаем нечто интересное. Если мы считаем истинными теории Гей-Люссака и Авогадро, мы видим, что формулой молекулы воды является H 2O — не HO, как считал Дальтон.

Рисунок 12.2. Еще раз рассмотрим результаты исследований Гей-Люссака вместе с законом Авогадро. Однако на этот раз мы игнорируем уравнение Дальтона и вместо этого предполагаем, что водород и кислород существуют как двухатомные молекулы, H 2и O 2соответственно. Это соответствует теории Гей-Люссака и закону Авогадро, и в результате не остается «лишних» атомов.
Однако мы в некотором смысле сжульничали; в конце концов, мы предположили, что кислород и водород существуют как двухатомные молекулы. Мы знаем, что это действительно так, но во времена Дальтона это было неизвестно. Даже с исключением допущения Дальтона и применением результатов Гей-Люссака с законом Авогадро у нас остается еще множество вариантов. Все, что мы сделали, так это обнаружили один достаточно хорошо (и, как известно сегодня, правильно) работающий принцип. Таким образом, остается вопрос: как мы согласуем все эти методы и результаты?
В то время как закон объемных отношений Гей-Люссака и закон Авогадро решают не только проблему того, как соединяются водород и кислород при образовании воды, они все же вынудили нас отклонить предположение Дальтона о том, как объединяются атомы (правило наибольшей Дальтона). Более того, изучая различные реакции, а не только одну, как это сделали мы, можно достигнуть соответствия между разными реакциями, придя к правильным химическим уравнениям. На самом деле у Авогадро было собственное простое правило. Он утверждал, что верное уравнение для данной химической реакции будет согласовываться с уравнениями других связанных химических реакций, а также результатами Гей-Люссака и его, Авогадро, законом.
Закон Авогадро был совершенно новым взглядом на атомы газа. То, что у газов при равном объеме, температуре и давлении одинаковое количество частиц, будь это атомы или молекулы, также означало, что внутри газа имеется большое количество свободного пространства и что атомы не находятся в постоянном контакте друг с другом. Далее, предполагая, что атомы газа могут объединиться, формируя молекулы, бросало вызов популярной идее, что одинаковые атомы могут только отталкивать друг друга.
В 1811 году эта идея были не слишком популярна, а Авогадро не предложил разумного доказательства. Он не вычислил и не определил экспериментально количество частиц, занимающих данный объем при постоянном давлении и температуре, чтобы показать, что оно одинаково независимо от вида частиц. По этой причине идеи Авогадро оставались забытыми в течение почти полувека.
Понятие атома и его роли в химии все еще оставалось предметом открытого спора. В целом все были согласны, что предположение, будто вещество состоит из атомов, было хорошим инструментом для химических реакций и наглядного отображения структур молекул, которые формировались. Означало ли это, что вещество по природе состоит из неделимых микроскопических частиц, которые следует называть атомами, — было совсем другим вопросом. Нехватка однозначного метода для определения относительной (и, конечно, абсолютной) массы атомов и молекул и их химических формул привела к возникновению нескольких несовместимых атомных теорий. Тем не менее атомная теория, так или иначе, внесла свой вклад в химию.
Поворотный момент наступил в 1858 году (спустя два года после смерти Авогадро), когда Станислао Канниццаро опубликовал статью, показывающую, что работа Авогадро, за незначительными исключениями из общего правила, позволяла определить относительные массы многих веществ, существующих в газообразном состоянии. Вспомните, что подход Дальтона требовал знания количества исходных материалов, используемых в химической реакции при создании интересующей молекулы, и предположения, из скольких атомов состоит молекула. Подход, предложенный Канниццаро, сокращал процесс определения относительной атомной массы до почти тривиального измерения удельного веса [157]. К сожалению, статья Канниццаро в научном сообществе сперва привлекла внимание очень немногих. Но скоро это изменилось.
Читать дальшеИнтервал:
Закладка: