Леонард Млодинов - Стивен Хокинг. О дружбе и физике
- Название:Стивен Хокинг. О дружбе и физике
- Автор:
- Жанр:
- Издательство:АСТ
- Год:2020
- Город:Москва
- ISBN:978-5-17-123364-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Леонард Млодинов - Стивен Хокинг. О дружбе и физике краткое содержание
Стивен Хокинг. О дружбе и физике - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Из-за подобных трудностей тогда, когда Стивен приехал в Кембридж, приверженцами общей теории относительности и космологии оставались в основном математики, чьи работы – в частности, создаваемые ими модели Вселенной – были весьма далеки от реальности. Они были «при деле», но при этом на их статьи никто не обращал внимания. Низкий уровень этих работ стал причиной письма, которое физик Ричард Фейнман из Калифорнийского технологического института написал в 1962 году своей жене из Варшавы, где проходила конференция по гравитации: «Так как в этой области физики напрочь отсутствуют экспериментальные исследования, в ней нет никакого движения… Здесь масса остолопов, а это отрицательно сказывается на моем давлении: говорится и серьезно обсуждается такая чушь, что мне поневоле приходится вступать в споры…»
Большинство физиков сходились во мнении, что вопросы о происхождении Вселенной рассматривать бесполезно, ибо они заводят в тупик; но именно эти вопросы и были милы сердцу Стивена Хокинга. Существующий в этой области застой не обескураживал, а наоборот, вдохновлял Стивена: с его точки зрения, это «научное поле» было не засохшим, а созревшим, и именно ему предстояло собрать с него урожай.
Людям, далеким от науки, может показаться, что физики-теоретики в основном занимаются тем, что решают разные задачи. Но гораздо важнее решения самой задачи ее постановка, потому что вопросы, которые вы задаете, уже дают вам направление, в котором следует искать ответ. Вопросы и отражают, и определяют ваш взгляд на мир. Стивен обладал завидным умением отвергать то, что впоследствии действительно оказывалось неважным, и быстро определять суть проблемы. Он интуитивно ставил верные вопросы и подвергал сомнению неоднозначные предположения других. Из-за этого Стивен прослыл в научной среде фрондером. Эта роль «прилипла» к нему естественным образом: он игнорировал общепринятый здравый смысл точно так же, как с легкостью нарушал скоростной режим и пренебрегал советами докторов. Он водил машину крайне безрассудно, и его физические рассуждения тоже были необузданными. Но – не безрассудными. Стивен всегда знал, даже еще будучи аспирантом, чего он хочет добиться в физике и почему.
Физика считается полем действия рассудка и логики. В большой степени это так и есть. Но для того, чтобы рассуждать логически, надо прежде всего иметь рамки мышления, которые определяют те предположения, которые вы делаете; выделяют концепции, которые вы будете использовать; ставят вопросы, на которые вы будете искать ответы. Люди часто принимают на веру рамки мышления, унаследованные ими от других или почерпнутые из истории или собственного прошлого; при этом обычно никогда не подвергают их сомнению и не исследуют их должным образом.
«Как это все началось?» – животрепещущий для Стивена вопрос. В течение двух тысячелетий все придерживались того мнения, что Вселенная либо всегда существовала в неизменном виде, либо была сотворена в некий момент – например, как это описано в Библии – и с тех пор оставалась относительно неизменной [3] Имеется в виду «неизменность» в космическом масштабе. Очевидно, что в малом масштабе происходят изменения, которые являются частью природы: планеты вращаются, скалы падают, а люди живут и умирают.
. Философы, от Аристотеля до Канта, а также ученые, включая даже Исаака Ньютона, верили именно в это.
Ньютону следовало бы лучше вникнуть в суть проблемы. Как может семейство галактик и звезд поддерживать неизменную конфигурацию, если каждая из них силами гравитации притягивает к себе все остальные? Не должны ли все эти объекты слиться с течением времени в единое целое? И поскольку с момента начала всего сущего прошло много времени, не должно ли все вещество уже успеть соединиться в огромный плотный шар? Ньютон знал об этой проблеме, но не считал ее заслуживающей серьезного внимания. Он говорил себе так: если Вселенная бесконечно большая, то скучивания вещества в ней не произойдет. Но это не так. После Ньютона некоторые ученые пытались модифицировать его теорию, чтобы наделить гравитацию отталкивающими свойствами на больших расстояниях: они применяли небольшую математическую хитрость, в результате которой планеты по-прежнему вращаются по своим орбитам, а на больших расстояниях Вселенная удерживается от коллапса. Но попытки такой модификации теории гравитации не увенчались успехом. Хотя в этой «игре» участвовал сам Эйнштейн: он добавил дополнительный «антигравитационный» член в уравнения общей теории относительности и назвал его космологической постоянной. Эта космологическая постоянная должна была поддерживать силу отталкивания, необходимую для того, чтобы удержать космос от схлопывания [4] Космологическая постоянная действует только на очень больших масштабах. Во времена Эйнштейна не существовало технических возможностей для ее измерения; вводить ее или нет – был свободный выбор Эйнштейна. Ситуация изменилась в 1998 году, когда выяснилось, что этот член в уравнениях необходим.
.
Осознание того, что все эти знаменитые философы и ученые заблуждались и что Вселенная на самом деле меняется, расширяется и эволюционирует, пришло только в XX столетии. Это было одно из самых замечательных открытий века. Свершилось оно благодаря американскому астроному Эдвину Хабблу, который преподавал испанский язык и тренировал баскетбольную команду в школе города Нью-Олбани (США, штат Индиана), пока не решил сделать научную карьеру в Университете Чикаго, где и защитил диссертацию доктора философских наук.
После окончания университета Хабблу повезло: в 1919 году он получил возможность работать в обсерватории Маунт-Вилсон неподалеку от Калифорнийского технологического института. Там как раз устанавливался новый телескоп. В то время преобладала точка зрения, что вся Вселенная состоит из одной Галактики – Млечного Пути. Но в 1924 году Хаббл обнаружил, что пятнышки, которые видят астрономы на небе, когда исследуют туманности – беловатые облака, простирающиеся между звездами – есть не что иное, как иные, удаленные галактики. Такие галактические «облака» были видны во всем пространстве, до которого мог дотянуться телескоп в обсерватории Маунт-Вилсон. Сейчас мы знаем, что они существуют и за пределами досягаемости этого телескопа.
Атомы в атмосферах горячих звезд находятся в состояниях с высокой энергией. Эта энергия включает в себя энергию движения атомов и внутреннюю энергию электронов в атомах. Мы знаем из квантовой механики, что электроны на своих орбитах могут принимать только вполне определенные значения энергии. Когда электрон перепрыгивает с некоторого энергетического уровня на низший, атом излучает свет с частотой, которая соответствует разности энергий между уровнем старта электрона и уровнем, на который он «приземлился». Но каждый элемент имеет свой уникальный набор энергетических уровней. В результате атомы водорода, гелия и других элементов излучают свет, состоящий из уникального набора частот. Этот свет обладает своими характерными признаками – «отпечатками пальцев», – которые можно использовать для отождествления химического элемента, испустившего этот свет. Астрономы используют эти отпечатки для определения состава комет, туманностей и различных типов звезд.
Читать дальшеИнтервал:
Закладка: