Генрих Эрлих - Легко ли плыть в сиропе. Откуда берутся странные научные открытия

Тут можно читать онлайн Генрих Эрлих - Легко ли плыть в сиропе. Откуда берутся странные научные открытия - бесплатно ознакомительный отрывок. Жанр: sci-phys, издательство Литагент Альпина, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Легко ли плыть в сиропе. Откуда берутся странные научные открытия
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Альпина
  • Год:
    2021
  • Город:
    Москва
  • ISBN:
    9785001393986
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Генрих Эрлих - Легко ли плыть в сиропе. Откуда берутся странные научные открытия краткое содержание

Легко ли плыть в сиропе. Откуда берутся странные научные открытия - описание и краткое содержание, автор Генрих Эрлих, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Как связаны между собой взрывчатка и алмазы, кока-кола и уровень рождаемости, поцелуи и аллергия? Каково это – жить в шкуре козла или летать между капель, как комары? Есть ли права у растений? Куда больнее всего жалит пчела? От несерьезного вопроса до настоящего открытия один шаг… И наука – это вовсе не унылый конвейер по производству знаний, она полна ошибок, заблуждений, курьезных случаев, нестандартных подходов к проблеме. Ученые, не побоявшиеся взглянуть на мир без предубеждения, порой становятся лауреатами Игнобелевской премии «за достижения, которые заставляют сначала рассмеяться, а потом – задуматься». В своей книге авторы Генрих Эрлих и Сергей Комаров рассказывают об этих невероятных открытиях, экспериментах исследователей (в том числе и над собой), параллелях (например, между устройством ада и черными дырами), далеко идущих выводах (восстановление структуры белка и поворот времени вспять), а самое главное – о неиссякаемой человеческой любознательности, умении задавать вопросы и, конечно же, чувстве юмора.

Легко ли плыть в сиропе. Откуда берутся странные научные открытия - читать онлайн бесплатно ознакомительный отрывок

Легко ли плыть в сиропе. Откуда берутся странные научные открытия - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Генрих Эрлих
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Интересно, что снижение вязкости подобных сомнений не вызывает. Оно точно облегчит плавание: менее вязкая жидкость не только хорошо обтекает тело, но и отлично сопротивляется движениям рук, то есть интенсивность создаваемых ими вихрей сохраняется. Изготовители костюмов для плавания учитывают этот эффект, обеспечивая спортсмену именно легкость обтекания, то есть дополнительно понижая число Рейнольдса.

А кто-нибудь живет в мире, где число Рейнольдса мало? Как там можно плавать? Да, такой мир существует, и не где-нибудь в мантии Земли, а непосредственно в нас самих. Это мир микроорганизмов. Из-за их размеров вода для них оказывается средой с очень малым числом Рейнольдса. Поэтому движение микробов резко отличается от движения человека или рыбы. Ведь если число Рейнольдса мало, тогда инерция не действует, и, если не прикладывать усилия, сразу остановишься. Но это еще не все: повторяющимися движениями нельзя продвинуться далеко вперед. Вот, например, кальмар, который медленно втягивает в себя воду, а затем быстро ее выбрасывает и получает ускорение. В мире с малым числом Рейнольдса этот фокус не пройдет: независимо от того, быстрое движение или медленное, при заборе воды кальмар станет смещаться назад, а при выбросе – на такое же расстояние вперед и в результате останется на одном месте. Двигаться в таких условиях можно, только если возвратных движений нет вовсе.

Такой движитель известен – это штопор. При его повороте возникает две силы. Одна направлена по касательной к штопору, эта сила для движения не нужна, хоть она и велика. Другая, гораздо меньшая, направлена вдоль оси вращения. Она-то и способна обеспечить тягу при малом числе Рейнольдса. Именно так двигаются жгутиковые микроорганизмы. А также сперматозоиды. Собственно, все мы появились на свет исключительно благодаря тому, что эти мельчайшие частички жизни приспособились быстро перемещаться в мире с малым числом Рейнольдса, энергично вращая своим жгутиком и так продвигаясь к заветной цели.

За сколько секунд можно справить нужду?

Мы не случайно посвятили столько места и времени рассказам о взаимодействии живых существ с жидкостями. Жидкости с их изменчивостью формы сами порой кажутся живыми. Можно часами смотреть на волны, бегущие по поверхности моря, или капающую из крана воду. А вот часами сидеть, уставившись в неподвижную стенку, – это, извините, диагноз. Гидродинамика с ее элегантными уравнениями и неожиданными следствиями неизмеримо интереснее сухого сопромата – так в технических вузах называют курс «Сопротивление материалов».

Не знаем, как у вас, а у нас классические гидродинамические выражения, типа "уравнение неразрывности струи" или "скорость истечения жидкости", всегда вызывали ассоциации с процессом, которому все люди предаются по нескольку раз на дню. Но эти ассоциации никогда не претворялись в желание заняться исследованием столь жизненно важного процесса – вероятно, поэтому мы никогда и не станем лауреатами Игнобелевской премии.

Не таков доцент Дэвид Ху из Технологического университета Джорджии, о котором мы уже упоминали в одном из предыдущих рассказов. Вот у него за мыслью следует слово, а слово не расходится с делом. Он, вообще-то, занимается гидродинамикой и механикой сплошных сред – науками сложными, насыщенными многоэтажными формулами, которые присущи тензорному исчислению и требуют немалого воображения. Видимо, для развития воображения он и поручает своим студентам решать весьма остроумные задачи. Например, изучить гидродинамику потока муравьев, вытекающих из носика чайника подобно потоку воды, или продемонстрировать, что лягушка при ловле мух использует на языке слизь, обладающую свойствами неньютоновской жидкости.

Несомненно, что замеченная нами ассоциация не прошла мимо внимания и доцента Ху. Но у него она породила вполне резонные вопросы: как зависит время опорожнения мочевого пузыря или кишечника от размера живого существа, освобождающегося от этих продуктов жизнедеятельности, а также от количества предварительно выпитого и съеденного? За вопросами последовали исследования: одно посвящено мочеиспусканию [17] P. J Yang, J. Pham, J. Choo, D. L. Hu. Duration of urination does not change with body size. PNAS , 2014, 111 (33): 11932–11937. https://doi.org/10.1073/pnas.1402289111 , второе – дефекации. Оба исследования произвели неизгладимое впечатление на Игнобелевский комитет, что принесло доценту Ху с сотрудниками премию по физике за 2015 год. Кратко результат формулируется так: любое животное опорожняет свой мочевой пузырь примерно за 21 секунду, а время выхода твердых экскрементов составляет в среднем 12 секунд.

Как же это было установлено и в чем причина подобного единообразия, если смотреть на явление с точки зрения механики сплошных сред? Исследователи при поддержке грантов для молодых специалистов Национального научного фонда США и президента университета начали свой тернистый путь к славе с простейшего вида работы – наблюдения за соответствующим процессом у разных животных. Для этого они снимали на видеокамеру акты испражнения обитателей зоопарка Атланты, а также пользовались видеороликами из интернета. Довольно скоро в наблюдениях стала прослеживаться система.

Так, оказалось, что существует два механизма избавления организма от отработанной жидкости. Маленькие животные, весом до трех килограммов, делают это капельками, а большие животные – струйкой или струей, в зависимости от размера. На этом-то этапе и была установлена удивительная закономерность, которая принесла участникам работы почетный нанограмм золота: время испускания мочи у крупных животных оказалось константой, не зависящей от веса: 21±13 секунд. Разброс, конечно, великоват, но кривая распределения имеет привычный колоколообразный вид нормального распределения. При этом различие в размерах животных огромно: у кота объем мочевого пузыря в 3600 раз меньше, чем у слона! Казалось бы, слону нипочем за котом не успеть. Но успевает. Как же это ему удается?

Для поиска ответа была построена ставшая знаменитой математическая модель. Вот ее краткое описание. Представим, что по трубе, длина и диаметр которой соответствуют таковым у мочеиспускательного канала животного, течет поток жидкости. Его движению способствуют две силы: давление мочевого пузыря и сила тяжести, а замедляют его вязкость, сила инерции и капиллярная сила. Давление пузыря удивительным образом представляет собой фундаментальную физиологическую константу: как показали измерения, проведенные зоологами, у млекопитающих оно составляет примерно 5,2 кПа независимо от размеров животного. Гравитационная сила, она же гидростатическое давление, пропорциональна высоте трубы. Сила инерции, или динамическое давление, – квадрату скорости потока. Сила вязкого давления – квадрату скорости потока и отношению длины трубы к ее диаметру. А капиллярная сила, стремящаяся свернуть струю в капли, обратно пропорциональна диаметру трубы.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Генрих Эрлих читать все книги автора по порядку

Генрих Эрлих - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Легко ли плыть в сиропе. Откуда берутся странные научные открытия отзывы


Отзывы читателей о книге Легко ли плыть в сиропе. Откуда берутся странные научные открытия, автор: Генрих Эрлих. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x