Генрих Эрлих - Легко ли плыть в сиропе. Откуда берутся странные научные открытия

Тут можно читать онлайн Генрих Эрлих - Легко ли плыть в сиропе. Откуда берутся странные научные открытия - бесплатно ознакомительный отрывок. Жанр: sci-phys, издательство Литагент Альпина, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Легко ли плыть в сиропе. Откуда берутся странные научные открытия
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Альпина
  • Год:
    2021
  • Город:
    Москва
  • ISBN:
    9785001393986
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Генрих Эрлих - Легко ли плыть в сиропе. Откуда берутся странные научные открытия краткое содержание

Легко ли плыть в сиропе. Откуда берутся странные научные открытия - описание и краткое содержание, автор Генрих Эрлих, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Как связаны между собой взрывчатка и алмазы, кока-кола и уровень рождаемости, поцелуи и аллергия? Каково это – жить в шкуре козла или летать между капель, как комары? Есть ли права у растений? Куда больнее всего жалит пчела? От несерьезного вопроса до настоящего открытия один шаг… И наука – это вовсе не унылый конвейер по производству знаний, она полна ошибок, заблуждений, курьезных случаев, нестандартных подходов к проблеме. Ученые, не побоявшиеся взглянуть на мир без предубеждения, порой становятся лауреатами Игнобелевской премии «за достижения, которые заставляют сначала рассмеяться, а потом – задуматься». В своей книге авторы Генрих Эрлих и Сергей Комаров рассказывают об этих невероятных открытиях, экспериментах исследователей (в том числе и над собой), параллелях (например, между устройством ада и черными дырами), далеко идущих выводах (восстановление структуры белка и поворот времени вспять), а самое главное – о неиссякаемой человеческой любознательности, умении задавать вопросы и, конечно же, чувстве юмора.

Легко ли плыть в сиропе. Откуда берутся странные научные открытия - читать онлайн бесплатно ознакомительный отрывок

Легко ли плыть в сиропе. Откуда берутся странные научные открытия - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Генрих Эрлих
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Для больших животных остается первые три силы, а вязкостью и капиллярной силой можно пренебречь. Тогда получится уравнение, в котором скорость потока выражена через параметры трубы и давление пузыря. Подставив этот результат в формулу для вычисления времени опорожнения мочевого пузыря, которое равно отношению его объема к скорости движения потока и площади поперечного сечения, получаем зависимость от объема пузыря и опять же параметров трубы. А они, как выяснили исследователи из группы Ху, закономерным образом зависят от веса тела: объем пропорционален весу в первой степени, а длина и диаметр мочеиспускательного канала – кубическому корню из веса. Подстановка этих зависимостей в формулу для времени показывает, что оно пропорционально весу в степени 1/6, или примерно 0,16, то есть зависимость от веса все-таки есть, но очень слабая. В общем-то точный расчет времени по экспериментальным данным дает не совсем константу, а именно слабую зависимость – с показателем 0,13. Такое совпадение свидетельствует: модель очень хороша. Из нее становится ясно, почему кот и слон освобождаются от жидкости за одно время: у слона всё больше – и пузырь, и длина канала, и его диаметр. В результате выше вклад силы тяжести, которая увеличивает скорость истечения потока, это и позволяет слону догнать кота в заочном соревновании.

А вот с мышами и крысами все сложнее. У них вклад капиллярных сил очень велик, ведь диаметр канала маленький. Эти силы так запутывают дело, что простую формулу вывести не получается, никаких инвариантов выявить не удается. Это соответствует эксперименту: время мочеиспускания у мелких животных различается двадцатикратно – от 0,1 до 2 секунд! Модель позволила рассчитать и параметры самого маленького животного, способного самостоятельно избавляться от мочи: у него диаметр канала равен 100 мкм. Это соответствует длине канала в 1,7 мм и весу в 0,8 г. Таковы параметры новорожденных мышат – их вес 0,5–3 г. И действительно, мать слизывает у них капельки мочи, которые в соответствии с игнобелевской моделью и не должны сами отделяться от канала. А вот насекомые в принципе не писают: у них продукты азотистого обмена выходят в сухом виде вместе с калом; аналоги почек у насекомых – мальпигиевы трубочки – открываются в кишку, а не во внешнюю среду.

По мнению авторов работы, их исследование – не просто удовлетворение любопытства, оно имеет практическую значимость. Во-первых, многие нарушения мочеиспускания изучают на животных, и теперь в руках медиков есть надежный инструмент для масштабирования полученных данных, чтобы их можно было применять к человеку. А во-вторых, бионический принцип позволит инженерам лучше проектировать масштабируемые гидродинамические системы, ведь мочевой пузырь и связанный с ним канал ничем не отличаются от какого-нибудь нефтехранилища, привязанного к нефтепроводу.

Аналогичную модель удалось создать для объяснения феномена дефекации. Действуя по схожей методике, исследователи из лаборатории доцента Ху определили: у подавляющего большинства млекопитающих, у которых твердые отходы жизнедеятельности выходят единым куском, а не орешками, как у коз или зайцев, имеется свой инвариант: этот процесс в норме (то есть без расстройства кишечника) занимает 12 секунд вне зависимости от веса животного. При этом скорость дефекации пропорциональна кубическому корню из веса, то есть длине животного, поскольку последняя также пропорциональна этому корню. Статистическая обработка данных измерения показывает соответственно, что время дефекации очень слабо зависит от веса – в степени −0,09, то есть чем больше вес, тем меньше время опорожнения, хотя 40-сантиметровая прямая кишка слона в десять раз длиннее, чем у кота.

Причиной такой инвариантности служит подобный найденному в первой работе набор физиологических констант и зависимостей, связывающих некие размеры с весом тела. В данном случае фундаментальной константой для всех млекопитающих стало минимальное давление, оказываемое гладкими мышцами кишечника на выделение в процессе дефекации, – 0,64 кПа; максимальное давление – в семь раз больше. С весом же тела связаны такие геометрические параметры, как диаметр и длина прямой кишки, а также толщина слизи на ее стенках: все они пропорциональны кубическому корню от веса. Интересно, что давление оказалось меньше, чем модуль сдвига твердых испражнений, который находится в пределах от 2 кПа у поссума (сумчатой летяги, не путать с опоссумом!) до 10 кПа у овцы. Иными словами, твердые испражнения не могут деформироваться в процессе выхода, поэтому важнейшее значение в кинематике процесса приобрела слизь – она играет роль смазки, и от нее зависит все.

Подстановка всех зависимостей в формулу для времени дефекации привела к тому, что показатели степеней при весе сократились, то есть время стало пропорционально весу в степени 0 – это оказался истинный инвариант, не то что время деуринации, которое от веса все-таки немного зависит. Однако подстановка значений дала время в 6,5 секунды, что в два раза меньше, чем показал эксперимент. Такое несовпадение, видимо, связано с плохо изученными свойствами слизи. Ее толщину измеряли следующим образом: брали свежие экскременты, которые из-за налипшей на них слизи еще блестели, и взвешивали. Затем ждали, когда блеск исчезнет, и снова взвешивали, предполагая, что слизь испарилась и, значит, разница веса позволит вычислить толщину ее слоя. Такая методика, конечно же, не слишком точна. Еще большую ошибку могут вызвать неточные измерения вязкости этой слизи, ведь в формуле это не коэффициент, а показатель степени.

Впрочем, отсутствие количественного совпадения не препятствует верным качественным выводам. Так, было подсчитано время дефекации человека при поносе; оно оказалось очень малым – 0,5 секунды с момента приложения давления гладкими мышцами кишечника, движение же шло с ускорением, что очень похоже на правду. Интересный результат получился в обратной ситуации – при запоре. Исследователи предположили, что в рамках принятого приближения запор означает отсутствие слизи. В этом случае движение выдавливаемого материала возможно лишь в результате его сдвиговой деформации. Подстановка в расчетную формулу механических характеристик наиболее плотных испражнений дала колоссальное время для этого случая – 524 дня при минимальном давлении и 6 часов при максимальном. Поскольку был взят экстремальный случай – в реальности какая-то слизь обязательно будет, – эта ситуация качественно опять же оказалась недалека от реальности.

Таким образом, теперь благодаря эпохальной серии работ группы Дэвида Ху мы знаем практически всё о механике процессов удаления продуктов жизнедеятельности из организма. Это дает возможность и врачам, и диетологам, рассуждая о путях улучшения жизни человечества, опираться не на слухи, домыслы и личное мнение, а на строгий научный инструментарий.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Генрих Эрлих читать все книги автора по порядку

Генрих Эрлих - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Легко ли плыть в сиропе. Откуда берутся странные научные открытия отзывы


Отзывы читателей о книге Легко ли плыть в сиропе. Откуда берутся странные научные открытия, автор: Генрих Эрлих. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x