Коллектив авторов - Квантовый мир. Невероятная теория в самом сердце мироздания
- Название:Квантовый мир. Невероятная теория в самом сердце мироздания
- Автор:
- Жанр:
- Издательство:АСТ
- Год:2020
- Город:Москва
- ISBN:978-5-17-121932-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Квантовый мир. Невероятная теория в самом сердце мироздания краткое содержание
В этой книге собраны размышления ведущих физиков и лучшие материалы журнала New Scientist, которые познакомят вас с прошлым, настоящим и будущим квантового мира позволят по-новому взглянуть на реальность.
Квантовый мир. Невероятная теория в самом сердце мироздания - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Следующая стадия эволюции лазеров продолжает развиваться: кардинально меняется способ формирования лазерного света. Новая волна приборов основывается на использовании для формирования света похожих на частицы порций энергии – не являясь ни светом, ни веществом, они одновременно представляют собой и то, и другое.
Лазеры и транзисторы используют квантовые частицы, например электроны и фотоны, но в них не задействуется напрямую таинственное квантовое поведение – суперпозиция и запутанность. Но перспективы области квантовой информации обещают нам и это (см. главу 5).
5. Квантовая информация и вычисления
Обработка информации, заключенной в квантовых состояниях, а не в электрических токах обычных компьютерных микросхем, открывает перспективы несравненно более эффективной, экономичной и безопасной обработки числовых данных. По крайней мере, в теории. Задача состоит лишь в том, чтобы сделать ее реальной. Что касается будущего, квантовая криптография обещает новый способ абсолютной конфиденциальной коммуникации – жизненно важной для все более цифровизирующегося общества. И это только начало: новые применения квантовой механики появляются все время.
Что делает квантовые компьютеры такими уникальными?
Идея использования законов квантовой механики для построения компьютера впервые была предложена физиком Ричардом Фейнманом (см. рис. 5.1) в 1982 году, а в 1985 году физик Дэвид Дойч создал первую теоретическую схему. Эта область процветала и в последующие десятилетия (см. хронологию ниже в этой главе). Но как в реальности построить квантовый компьютер и как он работает? Чтобы внести ясность, приведем сводку основ.
Обычные компьютеры обрабатывают информацию, используя наличие или отсутствие электрического заряда (или тока). Эти классические биты имеют два положения: включен (1) и выключен (0). Полупроводниковые переключатели – транзисторы – переворачивают эти биты, осуществляя логические элементы, например И, ИЛИ и НЕ. Объединяя эти элементы, мы можем вычислить все, что в принципе поддается вычислению.

Рис. 5.1. Ричард Фейнман – пионер в области квантовых вычислений.
В квантовых вычислениях переключение производится между квантовыми состояниями. К квантовым объектам, как правило, может быть применимо множество состояний одновременно: атом в одно и то же время может занимать несколько положений или находиться в нескольких энергетических состояниях, фотон – более чем в одном состоянии поляризации, и так далее. Можно сказать, что квантовый бит, или кубит, является суперпозицией, включающей одновременно и 0, и 1.
Это уже предлагает существенное увеличение вычислительной мощности. Но реальная основа работы квантового компьютера – это возможность запутанности друг в друге состояний множества кубитов, что создает суперпозицию всех возможных комбинаций однокубитных состояний. Разнообразные операции, одновременно проводимые над разными частями суперпозиции, эффективно реализуют крайне мощный процессор с параллельными вычислениями, характеризующийся экспоненциальным ростом потенциала: n кубитов имеют производительность обработки информации 2 n классических битов (см. рис. 5.2). Таким образом, 400-кубитный квантовый компьютер соответствует классическому компьютеру с 10 120битами – числом, намного превышающим оцениваемое количество частиц, существующих во Вселенной.

Рис. 5.2. Квантовая суперпозиция и запутанность объединяются, реализуя более эффективную обработку и телепортацию информации на расстояния.
Кубит
Обычные компьютеры используют для обработки информации биты. Основная единица квантовых вычислений – кубит. Он является физической системой, которая может существовать в двух разных состояниях и воспроизводить единицы и нули, составляющие двоичный код, который используют компьютеры. Кубит может быть электроном, поддерживаемым в магнитном поле, или поляризованным фотоном, поэтому его спином легко управлять. Подготовка кубитов, а также их считывание и запись в них информации проводится с помощью специализированного оборудования, работающего, например, на рубиновом лазере, нелинейном кристалле или даже розовом бриллианте.
Суперпозиция
Необычайным преимуществом кубита перед обычным битом является то, что он может быть приведен в состояние суперпозиции, при котором кубит и 0, и 1 одновременно. Но привести его в это состояние очень сложно: любые рассеянные потоки тепла, электромагнитный шум или удар могут снова выбить кубит из суперпозиции. Предотвращаются эти факторы с помощью сложных холодильных установок или новейшей системы подавления вибрации. Но даже в этом случае запускать квантовый компьютер можно на ограниченное время, пока не сколлапсирует суперпозиция. Это «время когерентности» очень важно.
Запутанность
И вот здесь происходит настоящая «магия». Неразрывная взаимосвязь двух субатомных частиц, или запутанность, позволяет управлять сразу несколькими кубитами. Именно это делает квантовые компьютеры такими выдающимися: всего лишь восемь кубитов, запутанные и поддерживаемые в суперпозиции, могут одновременно представлять любое число от 0 до 255, позволяя вам проводить множество операций сразу. Для квантовых вычислений важным качеством является количество запутанных кубитов, которым можно управлять одновременно. Сейчас 14 – это рекорд, достигнутый в 2011 году группой Райнера Блатта в Инсбрукском университете (Австрия).
Любой нормальный компьютер допускает ошибки. Иногда пик напряжения или проходящая частица космических лучей может поразить бит, изменив его с 0 на 1. Безопасность процессоров обеспечивается копированием данных, но в случае с кубитами работает закон, названный теоремой о запрете клонирования.
К счастью, для решения этой проблемы существуют алгоритмы исправления ошибок. Недостатком является то, что они нуждаются в огромном количестве кубитов – в 100–10 000 раз больше, чем нужно для реальных выполняемых вычислений. Однако мы быстро научились составлять массивы кубитов для исправления ошибок, и частота их появления также пошла на спад. В июне 2014 года компания IBM представила миру код, который исправляет ошибки и подходит для больших массивов кубитов – ожидается, что они обгонят по производительности обычные машины.
Читать дальшеИнтервал:
Закладка: