Стивен Вайнберг - Первые три минуты [litres]
- Название:Первые три минуты [litres]
- Автор:
- Жанр:
- Издательство:Литагент АСТ
- Год:2019
- Город:Москва
- ISBN:978-5-17-113740-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стивен Вайнберг - Первые три минуты [litres] краткое содержание
Первые три минуты [litres] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Должен сказать, лично меня эти аргументы не убеждают. Дейтерий не похож на гелий. И хотя его, как нам сейчас кажется, гораздо больше, чем позволяет модель плотной замкнутой Вселенной, в абсолютных величинах это ничтожная концентрация. Ничто не мешает нам сказать, что весь этот гелий образовался в астрофизических процессах (взрывах сверхновых, космических лучах; возможно, даже в квазизвездных объектах) совсем «недавно». Про гелий так рассуждать нельзя. Если бы он весь каким-то образом появился сравнительно недавно, выделилось бы огромное количество энергии, которое невозможно было бы не заметить. Утверждается, однако, что измеренные «Коперником» 20 миллионных долей дейтерия тоже нельзя получить обычными астрофизическими механизмами, не произведя попутно целый багаж редких легких элементов: лития, бериллия и бора. Но я не понимаю, как можно быть уверенным в том, что к возникновению этой примеси дейтерия не приложил руку какой-нибудь некосмологический механизм, до существования которого никто пока не додумался.
Есть еще одно ископаемое времен ранней Вселенной, которое заполняет все вокруг нас, но пока ускользает от приборов. В третьем стоп-кадре мы видели: едва температура упала до 10 миллиардов градусов, нейтрино стали распространяться свободно. С тех пор длина волны нейтрино растягивалась пропорционально размеру Вселенной, а их количество и распределение по энергиям оставались такими же, как если бы они не выходили из теплового равновесия (с температурой, обратно пропорциональной размеру Вселенной). С фотонами в это время происходило примерно то же самое, хотя они и оставались в тепловом равновесии гораздо дольше. Таким образом, сегодня температура нейтрино должна примерно равняться температуре фотонов. Значит, сегодня на один нуклон должно приходиться порядка одного миллиарда нейтрино и антинейтрино.
Соотношение температур можно вычислить и точнее. Через некоторое время после того, как Вселенная для нейтрино прояснилась, электроны и позитроны начали аннигилировать, подогревая только фотоны (не нейтрино). Следовательно, сегодня температура нейтрино должна быть немного меньше, чем у фотонов. Довольно легко посчитать коэффициент, на который отличаются температуры нейтрино и фотонов: кубический корень из 4/11. То есть нейтрино на 28,62 % холоднее фотона, а значит, плотность энергии нейтрино и антинейтрино составляет 45,42 % от плотности излучения (см. математическую заметку 6 на с. 249). Хотя до сих пор не упоминал этого явно, но везде, где речь шла о космологическом расширении, я учитывал эту нейтринную плотность энергии.
Обнаружение нейтринного фона стало бы триумфом стандартной модели ранней Вселенной. Мы уверенно предсказываем температуру нейтрино – 71,38 % от температуры фотонов, или 2 К. Единственное слабое звено в нашей теоретической схеме, касающейся количества нейтрино и их распределения по энергиям, – предположение о малости лептонного числа. (Лептонное число, напомним, – это количество нейтрино и других лептонов за вычетом антинейтрино и остальных антилептонов.) Если лептонное число такое же маленькое, как барионное, то количество нейтрино и антинейтрино должно совпадать с относительной точностью в одну миллиардную. Но если это число сравнимо с количеством фотонов, то возникнет «вырождение» – значительный избыток нейтрино (антинейтрино) и недостаток антинейтрино (нейтрино). Из-за этого вырождения в первые три минуты каким-то образом поменяется нейтронно-протонный баланс, что приведет к образованию другого количества первичных гелия и дейтерия. Зарегистрируй мы 2-градусный фон нейтрино, тут же получили бы ответ на вопрос, какое у Вселенной лептонное число. Но главное, мы получили бы блестящее подтверждение стандартной модели ранней Вселенной.
Увы, нейтрино взаимодействуют с обычным веществом настолько слабо, что никто до сих пор не придумал, как засечь его 2-градусный фон. Какая ирония судьбы: на каждый нуклон приходится около миллиарда нейтрино и антинейтрино, но никто не знает, как их поймать! Может быть, однажды кто-нибудь что-нибудь придумает.
В приведенном изложении первых трех минут жизни Вселенной кто-то из читателей, возможно, узрел излишнюю уверенность в научной правоте. Мы не собираемся ничего отрицать. По-моему, критический подход в научной деятельности применим не всегда. Часто необходимо отбросить все сомнения и, основываясь на какой-либо предпосылке, смело строить логическую цепочку, куда бы она ни вела. Заслуга не в том, чтобы не иметь теоретических предубеждений, а в том, чтобы иметь правильные теоретические предубеждения. Теоретические догадки всегда судят по их следствиям. Стандартная модель ранней Вселенной продемонстрировала некоторые успехи и обеспечила связную теоретическую концепцию для будущих экспериментов. Это не значит, что модель верна, но ее по крайней мере стоит воспринимать всерьез.
Тем не менее все же есть одна большая неопределенность, как туча нависшая над стандартной моделью. За всеми вычислениями, описанными в этой главе, стоит космологический принцип – предположение, что Вселенная однородна и изотропна. (Под однородностью мы пониманием следующее: для любого наблюдателя, перемещающегося вместе с расширяющимся веществом, Вселенная выглядит одинаково, где бы он ни находился. Изотропия означает, что мироздание для такого наблюдателя выглядит одинаково по всем направлениям.) Непосредственно из наблюдений нам известно, что реликтовое излучение вокруг нас весьма изотропно. Отсюда заключаем, что Вселенная обладала высокой изотропией и однородностью с тех самых пор, когда при температуре около 3000 К излучение отделилось от вещества. Но был ли космологический принцип справедлив и до этого, мы сказать не можем.
Может быть, космос сначала был вовсе не однородным и не изотропным, но потом силы трения различных частей расширяющейся Вселенной друг о друга разгладили его. Подобную «миксерную» модель активно пропагандировал Чарльз Мизнер из Мэрилендского университета. Возможно, как раз благодаря теплу, выделившемуся в процессе трения и перехода Вселенной к однородному и изотропному состоянию, и появился тот самый немыслимый миллиард фотонов на один нуклон. Однако, насколько мне известно, никто не может сказать, почему мироздание при рождении должно было быть неоднородным и изотропным. Как никто не в состоянии посчитать, сколько энергии выделилось при переходе к однородности и изотропии.
По моему мнению, эти белые пятна – не повод набрасываться на стандартную модель (что предпочли бы сделать некоторые космологи). Скорее, наоборот, нужно заняться ею всерьез и ожидать, что, может быть, она приведет к противоречию с наблюдаемыми данными. Пока даже непонятно, поменяет ли высокая степень анизотропии и неоднородности ход космической истории, изложенный в этой главе. Вселенная, не исключено, разгладилась буквально в первые несколько секунд. Тогда расчеты количества космологических гелия и дейтерия остаются в силе, как если бы космологический принцип выполнялся всегда. Пусть даже космос не успел до начала нуклеосинтеза стать однородным и изотропным, в любой равномерно расширяющейся области скорость синтеза гелия и дейтерия будет зависеть только от темпа расширения этой области и, не исключено, окажется близкой к значению, рассчитанному в стандартной модели. Кто знает, возможно, вся Вселенная, которую мы видим вплоть до нуклеосинтеза, – не что иное, как однородный и изотропный сгусток внутри более крупной неоднородной и неизотропной Вселенной.
Читать дальшеИнтервал:
Закладка: