Герман Смирнов - Под знаком необратимости (Очерки о теплоте)
- Название:Под знаком необратимости (Очерки о теплоте)
- Автор:
- Жанр:
- Издательство:Знание
- Год:1977
- Город:М.,
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Герман Смирнов - Под знаком необратимости (Очерки о теплоте) краткое содержание
Автор в живой увлекательной форме показывает пути становления принципов термодинамики, судьбу ее творцов, рассказывает о проблемах, которые были разрешены этой наукой в прошлом и над которыми специалисты работают сейчас.
Брошюра рассчитана на широкий круг читателей.
Под знаком необратимости (Очерки о теплоте) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Операций четыре: сжатие (ставим груз), подвод тепла, сопровождающийся расширением и подъемом груза, расширение (снимаем груз), отвод тепла. Если произвести очень точные измерения, можно обнаружить, что на нагревание сжатого стержня понадобилось теплоты немного больше, чем передано в холодильник при охлаждении несжатого. И эта разница в точности равна механической работе, затраченной на подъем груза.
Конечно, металл не очень-то удачное рабочее тело. Гораздо выгоднее — газ, объем которого сильно меняется при сжатии и нагревании. Но в принципе и газ должен совершать, как и металл, цикл операций: сжатие, подвод тепла, расширение, отвод тепла. Правда, каждый из этих процессов можно проводить разными способами. Скажем, охлаждать и нагревать его можно в замкнутом сосуде, объем которого постоянен. Такой процесс называют изохорным. Если же тепло подводится к газу, находящемуся в цилиндре с подвижным поршнем, — газ увеличивает объем, но давление его не меняется; это — изобарный процесс. Сжимать или расширять газ можно при постоянной температуре — он должен обмениваться теплотой с телом, температура которого не меняется — только тогда можно осуществить изотермический процесс. Если цилиндр с газом теплоизолировать, то, сжимая его поршнем, мы будем повышать его температуру. Если же он будет расширяться сам, температура его будет понижаться. Этот процесс, в котором рабочее тело не обменивается теплотой с окружающей средой, называется адиабатическим.
По-разному комбинируя эти процессы, нетрудно получить теоретические циклы, по которым работают современные тепловые двигатели. Скажем, комбинация из двух адиабатических и двух изохорных процессов образует цикл бензинового двигателя. Если заменить в этом цикле изохорный процесс, по которому идет нагрев газа, изобарным, можно получить цикл Дизеля. Два адиабатических и два изобарных процесса дадут теоретический цикл газовой турбины. Кстати, по этому же циклу работает и металлический стержень, поднимающий груз. Два изотермических и два изобарных процесса складываются в цикл Эриксона, а два изотермических и два изохорных — в цикл Стирлинга. Из всех возможных циклов Карно считал наиболее простым для анализа цикл, состоящий из двух изотерм и двух адиабат…
Он исходил из того, что в его распоряжении есть огромный источник тепла — нагреватель и столь же огромный приемник тепла — холодильник. Мы не случайно подчеркиваем, что нагреватель и холодильник огромны: благодаря этому их температура остается постоянной независимо от количества отдаваемого и получаемого тепла. Между таким изотермическим источником и приемником можно расположить тепловые машины, работающие по всевозможным циклам. Каждый из них будет превращать теплоту в работу. Но с одинаковым ли успехом? Есть ли среди этих циклов наилучший? И если есть, то какой именно?

Объединив свои усилия, попеременно на все лады сжимая, нагревая, расширяя и охлаждая газ в цилиндре под поршнем, Силач и Огнепоклонник легко получили основные типы тепловых двигателей.
А — идеальный цикл Карно: 1–2 — адиабатическое сжатие, 2–3 — изотермическое расширение, 3–4 — адиабатическое расширение, 4–1 — изотермическое сжатие. Площадь 6-2-3-5 — подведенная в цикле теплота, площадь 6-1-4-5 — отведенная теплота. Площадь 1-2-3-4 — полезная работа двигателя. КПД = пл.1-2-3-4/пл.6-2-3-5.
Б — идеальные циклы Стирлинга и Эриксона.
ЦИКЛ СТИРЛИНГА (6-1-2-3-5): 1–2 — изохорное нагревание, 2–3 — изотермическое расширение, 3–4 — изохорное охлаждение, 4–1 — изотермическое сжатие. Площадь 6-1-2-3-5 — подведенная теплота, площадь 6-1-4-3-5 — отведенная теплота. Площадь 1-2-3-4 — полезная работа. КПД = пл.1-2-3-4/пл.6-1-2-3-5.
ЦИКЛ ЭРИКСОНА (6-1-2'-3'-5'): 1–2' — изобарное нагревание, 2'-3' — изотермическое расширение, 3'-4 — изобарное охлаждение, 4–1 — изотермическое сжатие. Площадь 6-1-2'-3'-5' — подведенная теплота, площадь 6-1-4-3'-5' — отведенная теплота. Площадь 1–2'-3'-4 — полезная механическая работа. КПД = пл.1–2'-3'-4/пл.6-1-2'-3'-5'.
В — идеальные циклы Отто и Брайтона.
ЦИКЛ ОТТО (6-2-3-5): 1–2 — адиабатическое сжатие, 2–3 — изохорный нагрев, 3–4 — адиабатическое расширение, 4–1 — изохорное охлаждение. Площадь 6-2-3-5 — подведенная теплота, площадь 6-1-4-5 — отведенная теплота. Площадь 1-2-3-4 — полезная механическая работа. КПД = пл.1-2-3-4/пл.6-2-3-5.
ЦИКЛ БРАЙТОНА (6-2-3'-5'): 1–2 — адиабатическое сжатие, 2–3' — изобарный нагрев, 3'-4' — адиабатическое расширение, 4'-1 — изобарное охлаждение. Площадь 6-2-3'-5' — подведенная теплота, площадь 6-1-4'-5' — отведенная теплота. Площадь 1-2-3'-4' — полезная механическая работа. КПД = пл.1-2-3'-4'/пл.6–2—3'—5'.
Карно считал, как уже говорилось раньше: «в телах, употребляемых для развития движущей силы тепла, не должно быть ни одного изменения температуры, происходящего не от изменения объема». Это значит, что в цикле не должно быть ни одного процесса, в котором рабочее тело изменяло бы свою температуру за счет подвода или отвода теплоты.
Изменять температуру можно лишь за счет адиабатических, чисто механических процессов. А подвод или отвод тепла в изотермических процессах не сопровождается изменением температуры. Вот почему цикл, составленный из двух адиабатических и двух изотермических процессов, будет самым эффективным из всех, могущих быть встроенными между изотермическим нагревателем и холодильником.
Чтобы сравнить двигатели, работающие по разным циклам, их экономичность оценивается с помощью числового коэффициента — коэффициента полезного действия, который для тепловых двигателей представляет собой отношение работы, полученной на выходе, к теплоте, подведенной на входе. Этот коэффициент — КПД — для идеального цикла Карно выражается очень простой формулой: КПД = Т 1- Т 2/Т 1.
Здесь Т 1— абсолютная температура нагревателя, а Т 2— абсолютная температура холодильника. (Абсолютная температура получается прибавлением 273,16° к температуре по шкале Цельсия.)
Из этой формулы видно: для повышения КПД надо и увеличивать температуру нагревателя, и уменьшать температуру холодильника. Но температура холодильника — это температура окружающего воздуха на Земле, которая выше абсолютного нуля примерно на 300°. Поэтому сколь бы высоко мы ни поднимали температуру Т 1, нам все равно не получить КПД даже идеального теплового двигателя, равным точно 100 %. И еще один неожиданный вывод вытекает из формулы: экономичность теплового двигателя не зависит от свойств рабочего тела.
Трактат Карно оказал огромное влияние на развитие тепловых двигателей. Он внес ясность в запутанный и сложный вопрос, показал, чего можно и чего нельзя ожидать от тепловых машин. Во времена, когда паровой двигатель господствовал в промышленности, когда все попытки изобретателей заменить пар воздухом терпели провал за провалом, Карно прозорливо указывал: «…употребление атмосферного воздуха для развития движущей силы тепла на практике представит огромные трудности, но, может быть, не непреодолимые; если их удастся победить, то воздух обнаружит большие преимущества перед водяным паром». Наконец, Карно объяснил, почему выгодно с точки зрения экономичности повышать температуру, а следовательно, и давление пара. И именно он указал на заблуждения многих практиков, пытавшихся добиться улучшения экономичности за счет замены воды ртутью, алкоголем, серой… «Движущая сила тепла не зависит от агентов, взятых для ее развития».
Читать дальшеИнтервал:
Закладка: