Крис Импи - Чудовища доктора Эйнштейна [litres]

Тут можно читать онлайн Крис Импи - Чудовища доктора Эйнштейна [litres] - бесплатно ознакомительный отрывок. Жанр: sci-phys, издательство Л Array, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Чудовища доктора Эйнштейна [litres]
  • Автор:
  • Жанр:
  • Издательство:
    Л Array
  • Год:
    2020
  • Город:
    М
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Крис Импи - Чудовища доктора Эйнштейна [litres] краткое содержание

Чудовища доктора Эйнштейна [litres] - описание и краткое содержание, автор Крис Импи, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Наши представления о черных дырах чаще всего основываются на популярных мифах и нескольких общеизвестных научных фактах. Описывая историю исследования черных дыр, Крис Импи с легкостью развенчивает наиболее распространенные заблуждения и приоткрывает дверь в загадочный мир далеких звезд и их невидимых, но влиятельных спутниц.
История астрофизики предстает как череда потрясающих открытий, сделанных несколькими поколениями увлеченных и талантливейших ученых, сумевших описать прошлое, настоящее и будущее космического пространства, вычислить приблизительное местоположение ближайших черных дыр и предположить, что ждет Вселенную через миллионы лет.
Живое, увлекательное повествование и подробные объяснения делают книгу понятной для любого читателя – от ученого-физика до школьника.

Чудовища доктора Эйнштейна [litres] - читать онлайн бесплатно ознакомительный отрывок

Чудовища доктора Эйнштейна [litres] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Крис Импи
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В августе 2017 г. LIGO зарегистрировала еще одну пульсацию гравитационных волн. Это событие имело два отличия от предыдущих. Сигнал был слабее, и его источник находился лишь в 130 млн световых лет. Это значит, что сигнал возник при слиянии менее массивных объектов – нейтронных звезд, а не черных дыр [361]. LIGO работала совместно с европейским интерферометром Virgo, и сигналы трех разных детекторов позволили ученым с беспрецедентной точностью определить, откуда именно пришли гравитационные волны. Нейтронные звезды слились в галактике NGC4993. Обсерватории мира включились в работу.

В результате было получено огромное количество данных и родилась астрономия - фото 62

В результате было получено огромное количество данных, и родилась астрономия нового типа. Два спутника NASA зарегистрировали выброс гамма-лучей от слияния нейтронных звезд, и свыше 70 телескопов по всему земному шару поймали затухающее оптическое и инфракрасное свечение, возникшее вследствие столкновения. В отличие от слияния черных дыр, при котором не возникает электромагнитного излучения, нейтронные звезды сливаются во взрыве, который в тысячу раз мощнее сверхновой. Как следствие мы имеем выброс излучения и поток нейтронов, приведших в движение облако радиоактивных продуктов [362]. За один день облако разрослось от размеров большого города до размеров Солнечной системы. Нейтроны внедрились в ядра атомов и превратили их в ядра более тяжелых элементов. По оценкам теоретиков, при событии образовалось 200 земных масс золота – на $10 31, если бы вы их заполучили! Наблюдение за гравитационными волнами сопоставлялось с исчерпывающей информацией об электромагнитных излучениях, и это направление было названо многосигнальной астрономией. Предполагается, что LIGO и Virgo примерно раз в неделю будут наблюдать слияние нейтронных звезд и раз в две недели – слияние черных дыр [363]. Космос бурлит волнами пространственно-временного континуума, а астрономы наконец обрели глаза, чтобы это видеть.

Награда недолго ждала героев. Часто случается так, что между открытием и присуждением его авторам Нобелевской премии проходит много времени. Некоторые выдающиеся ученые умерли, так этого и не дождавшись, а посмертно премия не присуждается. Не приходилось, однако, сомневаться, что регистрация гравитационных волн быстро получит признание. И неудивительно, что в октябре 2017 г., менее чем через два года после того, как LIGO впервые ощутила волнение пространственно-временного континуума, Райнер Вайсс, Кип Торн и Барри Бэриш были объявлены лауреатами Нобелевской премии по физике.

Столкновения и слияния массивных черных дыр

Теперь, по обнаружении колебаний пространственно-временного континуума, мы ожидаем следующего. В Млечном Пути миллиард нейтронных звезд и 300 млн черных дыр – множество кандидатов на слияние. Однако вероятность того, что они входят в тесно связанные двойные системы, очень мала, поэтому слияние черных дыр происходит примерно раз в 500 000 лет. Долго придется ждать! Впрочем, чувствительность LIGO обеспечивает громадный охват в масштабах Вселенной. Когда усовершенствованная LIGO вновь заработает в 2020 г., она будет в три раза чувствительней, следовательно, сможет уловить сигнал с расстояния, в три раза большего [364]. Она измерит невероятно слабые сдвиги – на какие-то доли 10 22. Поскольку объем пропорционален кубу расстояния, количество объектов вырастет в 30 раз. Возможно, будет регистрироваться до 1000 событий в год, или по два ежедневно [365].

Другой режим исследования – это гравитационные волны, излучаемые при проглатывании сверхмассивной черной дырой, находящейся в центре галактики, компактного тела – например, нейтронной звезды или черной дыры звездной массы. Снова проведем аналогию со звуком: чем массивнее черные дыры, тем продолжительнее орбитальное время при их слиянии и тем ниже частота специфического «чирпа». Сверхмассивное тело «звучит» в интервале частот от 10 –4Гц до 1 Гц, орбитальное время составляет от нескольких часов до нескольких секунд. Сигналы сверхмассивной черной дыры будут ниже порога слышимости человека и даже ниже самой низко звучащей трубы органа; такие звуки скорее ощущаются, чем воспринимаются на слух.

Из-за столь низкого интервала частот детектор, который регистрирует гравитационные волны, исходящие от самых массивных черных дыр, должен находиться в первозданной среде космоса. Предполагаемым инструментом для решения этой задачи является лазерно-интерферометрическая космическая антенна (LISA). Это будет «созвездие» из трех спутников, образующих равносторонний треугольник со стороной миллион километров [366]. Установка, в десять раз превышающая размер орбиты Луны, будет обращаться вокруг Солнца на том же расстоянии от него, что и Земля, но с отставанием 20 градусов. На основном спутнике будут размещены лазер и детектор, на двух других, вспомогательных, – отражатели, прикрепленные к пробным массам из сплава золота и платины. LISA создана для измерений смещений менее размера атома на расстоянии 1 млн км, или с точностью 1 из 10 21. Чтобы зарегистрировать крохотные колебания пространственно-временного континуума, пробные массы должны быть защищены от воздействия любой силы, кроме гравитации, словно бы они не были частью космического аппарата и просто «свободно падали» на орбите Земля – Солнце. Решение этой инженерной задачи требует безупречного контроля над космическим кораблем. Каждый аппарат должен парить вокруг своей пробной массы, определяя свое положение относительно него с помощью емкостных сенсоров и точными микродвигателями поддерживая идеальную центровку по массе. В 2016 г. испытательная миссия ЕКА LISA Pathfinder доказала работоспособность технологии. Благодаря успеху LIGO в 2017 г. были приняты обязательства по финансированию проекта, и теперь у LISA блестящие перспективы [367].

Согласно стандартной космологической модели, структуры строятся иерархически, путем слияния меньших тел и поглощения окружающей материи. Так, карликовые галактики, объединяясь, создают большие галактики, а те продолжают расти – как за счет объединения с более многочисленными карликовыми галактиками, так и за счет газа, попадающего из межгалактического пространства. Центральные черные дыры следуют тому же процессу роста, но трудно предсказать подробности, потому что он зависит от сложного процесса аккреции и особых условий в центре галактик [368].

Слияния сверхмассивных черных дыр происходят еще медленнее и, соответственно, излучают гравитационные волны меньшей частоты. Исходя из примерных расчетов, пара черных дыр в миллион солнечных масс должна при слиянии излучать гравитационные волны частотой 10 –3Гц в течение часа; при массах в миллиард солнечных частота гравитационных волн составит 10 –9Гц, а временная шкала растянется на десятки лет. Чтобы поймать волну, странствие которой займет годы, детектор должен быть исключительно стабильным. Основательное компьютерное моделирование говорит о том, что LISA будет регистрировать несколько слияний в год – в основном ситуации, когда обе черные дыры в 10 6–10 7раз массивнее Солнца. Такая выборка позволит нам взглянуть на ранний этап формирования черных дыр и галактик [369].

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Крис Импи читать все книги автора по порядку

Крис Импи - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Чудовища доктора Эйнштейна [litres] отзывы


Отзывы читателей о книге Чудовища доктора Эйнштейна [litres], автор: Крис Импи. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x