Крис Импи - Чудовища доктора Эйнштейна [litres]
- Название:Чудовища доктора Эйнштейна [litres]
- Автор:
- Жанр:
- Издательство:Л Array
- Год:2020
- Город:М
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Крис Импи - Чудовища доктора Эйнштейна [litres] краткое содержание
История астрофизики предстает как череда потрясающих открытий, сделанных несколькими поколениями увлеченных и талантливейших ученых, сумевших описать прошлое, настоящее и будущее космического пространства, вычислить приблизительное местоположение ближайших черных дыр и предположить, что ждет Вселенную через миллионы лет.
Живое, увлекательное повествование и подробные объяснения делают книгу понятной для любого читателя – от ученого-физика до школьника.
Чудовища доктора Эйнштейна [litres] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В настоящее время, однако, черные дыры дают нам возможность подвергнуть теорию гравитации решающей проверке. Стремление объединить квантовую теорию и общую теорию относительности привело к разработке гравитации многомерного пространственно-временного континуума. Три привычных пространственных измерения служат лишь намеком на дополнительные скрытые измерения. Черные дыры должны быть включены в эту новую схему.
Новая эпоха изучения гравитации
Почему гравитация является такой слабой? Этот вопрос кажется абсурдным, особенно в дни, когда трудно встать с кровати, – тут следует вспомнить, как маленький магнит поднимает скрепку, побеждая увлекающую ее вниз силу притяжения всей Земли. Гравитация намного слабее трех других фундаментальных сил, попытка объяснить этот простой факт уводит нас через кроличью нору в скрытые измерения и множественные вселенные.
Как мы видели, физики уже допускали, что четыре фундаментальные силы могут проявляться как единая суперсила при достаточно высоких температурах или энергиях. Объединение двух из четырех сил наблюдалось в ускорителях частиц в 1970-е гг. и ознаменовалось присуждением нескольких Нобелевских премий. Следуя этим путем, ученые пришли к идее суперсимметрии. В обыденном мире частицы с полуцелыми спинами – такие, как электроны и кварки (класс фермионов), – не взаимодействуют с частицами с целым спином – например, фотонами и глюонами (класс бозонов) [376]. Для субатомных частиц спин является умозрительным математическим свойством, а не прямой аналогией вращения волчка или планеты. Фермионы и бозоны столь же чужды друг другу, как масло и вода. Суперсимметрия объединяет эти категории, предсказывая множество «теневых» частиц у каждого фермиона и бозона, причем утверждается, что все силы, кроме гравитации, сливаются в одну силу при чудовищной температуре – 10 29кельвинов. Теоретики дошли до суперсимметрии в погоне за мечтой о единстве, лежащем в основе великого множества различных субатомных частиц. Однако идея суперсимметрии была поставлена под сомнение, поскольку никаких признаков существования этих теневых частиц не наблюдалось даже в экспериментах в Большом адронном коллайдере.
Второе наступление на концепцию объединения сил началось в 1980-х гг. – посредством теории струн. Теория струн ловко обходит проблемы стандартной модели физики частиц, выдвигая гипотезу о том, что частицы не являются фундаментальными, а представляют собой режимы колебаний крохотных одномерных объектов, названных струнами. Увлечение теорией струн распространилось в сообществе физиков-теоретиков как лесной пожар. Теория опирается на очень точную математику и естественным образом объединяет гравитацию с тремя другими силами. Однако после десяти с лишним лет интенсивных исследований многие физики разочаровались в ней. Ее математика очень сложна и часто не проверяема, требует наличия у пространственно-временного континуума девяти измерений – на целых пять больше, чем нужно! В теории струн «скрытые» измерения реализуются лишь при невероятно высокой температуре – 10 32кельвинов или в невероятно маленьком масштабе – 10 –35м. Создавалось впечатление, что теория не проверяема [377].
Познакомимся с Лизой Рэндалл. В детстве она увлеклась математикой, поскольку любила точные ответы. Она была первой девушкой-капитаном математической команды своей школы – Стайвесант, Нью-Йорк – и одноклассницей видного теоретика струн Брайана Грина. В 18 лет она победила на конкурсе научных талантов памяти Вестингауза с проектом Гауссовых целых чисел. Получив докторскую степень в Гарварде, она перебралась на другой берег реки, в МТИ, где стала адъюнкт-профессором и восходящей звездой теоретической физики.
Лизу Рэндалл увлекает не только математика, но и музыка. В мире не так много опер, на создание которых вдохновила теоретическая физика. Представителя этого научного направления может воодушевить даже идея оперы-буфф, например «Эйнштейн на пляже» Филипа Гласса. Лиза Рэндалл пополнила этот скудный репертуар. «Гипермузыкальный пролог: проективная опера в семи планах» была написана испанским композитором Гектором Паррой на ее либретто.
Чтобы понять, что побудило Лизу Рэндалл творчески подойти к гравитации, вернемся к запутанной проблеме сингулярностей. Согласно общей теории относительности, каждая черная дыра содержит сингулярность, где искривление пространственно-временного континуума бесконечно [378]. Оказавшись внутри черной дыры, уравнения Эйнштейна «садятся в лужу» и предсказывают нечто бессмысленное с точки зрения физики. Стивен Хокинг доказал, что сингулярности – обязательный элемент черной дыры, и эффектно сформулировал проблему: общая теория относительности содержит зерна собственного разрушения.
Вариант выхода из тупика предлагает теория струн. Она возникла как следствие ряда проблем фундаментальной физики. Одна из проблем – объединение сил природы в одной схеме. «Гладкая» теория искривленного пространственно-временного континуума не согласуется с «зернистой» теорией субатомных частиц. Поиск квантовой гравитации десятилетиями приводил Эйнштейна в замешательство. Кроме того, успешная в целом Стандартная модель физики частиц имеет недостаток. У электронов в этой модели – нулевой размер, следовательно, они должны иметь бесконечную плотность вещества и бесконечную плотность заряда – еще один пример сингулярностей, словно нарушающих законы физики. Мы пока не можем объяснить, почему существует так много элементарных частиц с разными массами, материя преобладает над антиматерией, а темная материя и темная энергия являются двумя главными составляющими Вселенной [379].
Рэндалл знала, что теория струн в ходе исследований 1990-х гг. привела к открытию многообразия бран. Брана – сокращение от «мембрана» – это тело меньшей размерности в многомерном пространстве. Представьте лист бумаги, являющийся двумерным объектом в трехмерном пространстве. Муравьи, ползающие по листу бумаги, могут перемещаться только в двух измерениях: они не подозревают о третьем. Возможно даже существование другого листа бумаги, по которому ползают муравьи, не знающие о параллельной «вселенной» рядом с ними в третьем измерении. Подобным образом наша Вселенная может быть браной, трехмерным островом в океане пространства большей размерности. К бране привязаны частицы, но не гравитация, поскольку, согласно общей теории относительности, гравитация должна существовать в полной геометрии пространства. Рэндалл увидела в этом возможность объяснения удивительной слабости гравитации.
Несколько лет Рэндалл отвергала концепцию дополнительных измерений, но участвовала в мозговых штурмах на тему бран в МТИ вместе с Раманом Сандрумом из Бостонского университета. Разработанный ими математический аппарат описывал пару вселенных, четырехмерные браны, слабо разделенные пятимерным пространством. Ученые обнаружили, что пространство между бранами деформировано, причем деформация может увеличивать и уменьшать тела или силы между бранами. Следовательно, гравитация может быть такой же сильной, как и другие силы одной браны, но если мы находимся в другой бране, то ощущаем гравитацию как чрезвычайно слабую (илл. 63). Затем Рэндалл и Сандрума ошеломила догадка: пятое измерение может быть бесконечным, и мы об этом не догадаемся. До этого момента физики принимали устоявшуюся точку зрения теории струн: считалось, что дополнительные измерения скручены так туго, что никакой эксперимент не позволит провести испытания. В теории Рэндалл и Сандрума они могут наблюдаться в экспериментах на ускорителях частиц [380].
Читать дальшеИнтервал:
Закладка: