Джирл Уокер - Новый физический фейерверк
- Название:Новый физический фейерверк
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2019
- Город:Москва
- ISBN:9785001461852
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джирл Уокер - Новый физический фейерверк краткое содержание
Новый физический фейерверк - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
1.130. Парадокс лучника
Как бы хорошо ни прицелился лучник, когда он спускает тетиву и стрела пролетает, не касаясь рукояти лука, то в полете она может отклониться от линии прицела на угол до 7°. Парадокс лучника заключается в том, что стрела все же попадет в цель. Отклонение стрелы выглядит еще более странным, если посмотреть замедленную съемку выстрела. При наведении на цель стрела опирается на рукоять, но после того, как тетиву отпустили, стрела и лук больше не соприкоснутся. Чем объяснить такое поведение и как стрела все-таки попадает в цель?
Когда длинный лук использовался в боях, к кончику стрелы прикрепляли шарик с пчелиным воском. Зачем?
ОТВЕТ •Когда спускают тетиву, стрела получает от нее и лука боковой импульс. Из-за возникающих колебаний стрела огибает лук, не касаясь его. Чтобы стрела могла пролететь, не задев рукоять оперенным концом, она должна совершить одно полное колебание вправо-влево за то время, что она вылетает из лука. Это требование накладывает ограничения на гибкость стрелы. Если она слишком гибкая, колебания будут слишком медленные и оперенный конец стукнется о рукоять. Если она слишком жесткая, колебания будут слишком быстрые либо боковое движение окажется недостаточным и оторвавшаяся от тетивы стрела будет иметь меньшую энергию, поскольку израсходует часть энергии на трение или соударение оперенного конца с рукоятью. И в том и в другом случае точность стрельбы ухудшается.
На кончик стрелы насаживали шарик пчелиного воска, чтобы стрела легче пронзала доспехи вражеских солдат. Считалось, что при соударении шарика с кольчугой было меньше шансов, что стрела соскользнет с нее, и больше — что проникнет сквозь отверстия в кольчуге.
1.131. Колеблющиеся растения
Порыв ураганного ветра может сломать дерево или вырвать его с корнем. А если ветер существенно слабее, может ли произойти что-то подобное?
ОТВЕТ •Каждое дерево будет раскачиваться с частотой (называемой собственной частотой ), при которой основание неподвижно, верхушка раскачивается с максимальной амплитудой, а промежуточные точки колеблются с амплитудой промежуточной. Значение собственной частоты зависит от высоты дерева, его породы (способности сгибаться) и от сопротивления движению веток и листьев со стороны воздуха. Единичный порыв ветра может заставить дерево раскачиваться, но эти колебания быстро затухнут. Маловероятно, что от этого дерево сломается или его вырвет с корнем. Это может произойти, если несколько порывов ветра будут раскачивать дерево с частотой, близкой к собственной частоте дерева, то есть наступят условия так называемого резонанса . Это напоминает раскачивание детских качелей, когда вы не очень сильно подталкиваете их с собственной частотой качелей и размах качаний постепенно увеличивается. Так и порывы ветра тоже способны раскачать деревья.
Безусловно, порывы ветра не налетают с постоянной частотой, но, если их средняя частота близка к резонансной частоте дерева, оно может раскачаться до такой степени, что сломается или его вырвет с корнем. Однако если дерево стоит в окружении других деревьев, то они не только защищают его от порывов ветра. Их ветки трутся о ветки нашего дерева, и энергия колебаний постепенно гасится. И наконец, любое дерево — и отдельно стоящее, и окруженное другими деревьями — будет терять энергию за счет торможения листвы о воздух и деформации древесины при качании.
Травянистые растения тоже входят в резонанс с порывами ветра, если те повторяются на их собственной частоте, и тоже могут раскачаться так сильно, что их стебли сломаются или их вырвет с корнем. У травянистых это происходит на частоте 1–2 Гц — чуть выше, чем у деревьев.
1.132. Колебания высоких зданий
Высокие здания под действием ветра могут колебаться, что раздражает и даже пугает находящихся внутри людей. Строить более жесткие здания, чтобы уменьшить раскачку, нецелесообразно и неэкономично. Как еще можно снизить амплитуду колебаний до приемлемого уровня?
ОТВЕТ •Один из способов минимизировать колебания — смонтировать на крыше пружинный механизм, причем уложить пружины нужно по господствующему направлению ветра. Один конец пружины прикрепляется к крыше, а другой — к грузу, который двигается параллельно пружине. Резонансную частоту груза, с которой он будет колебаться на конце пружины, подстраивают под собственную частоту колебаний здания. И когда здание начинает раскачиваться, пружина растягивается и вынуждает груз колебаться на той же частоте. Однако колебания груза отстают от колебаний здания, в результате объекты колеблются в противофазе: когда здание качается влево, груз движется вправо, а сила, действующая со стороны пружины на здание, оказывается направленной навстречу колебаниям здания, амплитуда которых уменьшается.
Некоторые здания снабжаются двойным пружинным механизмом: меньший механизм прикрепляется к грузу большего механизма. Частота колебаний меньшего механизма с помощью электронной схемы, следящей за частотой колебаний здания, точно настраивается на эту частоту. На некоторых зданиях устанавливаются демпферы с колеблющейся жидкостью, в которых вода плещется в противофазе с колебаниями здания. А в башне Тайбэй-101 (Тайвань) высотой в 101 этаж (508 м) на уровне 92-го этажа установили шар-маятник весом 680 000 кг.
1.133. Прыжки в воду с пружинящего трамплина
Опытный спортсмен знает, как нужно разбегаться при выполнении прыжка с трамплина, который представляет собой пружинящую доску, закрепленную одним концом. Сначала нужно быстро сделать три шага по доске, чтобы она начала колебаться, а потом прыгнуть на самый конец трамплина так, чтобы он подбросил спортсмена высоко в воздух. А новичок, подражая опытному спортсмену, может сделать вроде все то же самое, но доска почему-то его не подбросит. Более того, его может даже скинуть с доски. В чем заключается «секрет» высокого прыжка опытных спортсменов?
ОТВЕТ •На расстоянии примерно одной трети от закрепленного конца трамплина находится его центр вращения. При разбеге спортсмен делает три быстрых шага по доске и заступает за центр вращения так, чтобы свободный конец доски прогнулся вниз. Когда доска качнется вверх и пройдет горизонтальное положение, спортсмена подкинет вверх и в сторону свободного конца доски. Опытный спортсмен вымеряет шаги так, чтобы оказаться на свободном конце доски в тот момент, когда она совершит 2,5 колебания, то есть когда она движется вниз с максимальной скоростью. Опустившийся на нее в эту секунду спортсмен еще больше прогибает вниз ее свободный конец, и при возвратном движении она катапультирует его высоко в воздух.
Читать дальшеИнтервал:
Закладка: