Брайан Китинг - Гонка за Нобелем. История о космологии, амбициях и высшей научной награде
- Название:Гонка за Нобелем. История о космологии, амбициях и высшей научной награде
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2019
- Город:Москва
- ISBN:978-5-0013-9163-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Брайан Китинг - Гонка за Нобелем. История о космологии, амбициях и высшей научной награде краткое содержание
Каково это — быть очевидцем Большого взрыва? В 2014 году астрономы, вооруженные самым мощным в истории наземным радиотелескопом BICEP2, сочли, что увидели искру, воспламенившую Большой взрыв. Миллионы человек по всему миру смотрели прямую трансляцию пресс-конференции из Гарвардского университета, на которой было объявлено об этом эпохальном открытии. Но действительно ли космологи прочитали космический пролог или же, загипнотизированные мечтой о Нобелевской премии, были обмануты галактическим миражом?
Брайан Китинг — космолог и разработчик эксперимента по исследованию реликтового излучения BICEP — рассказывает историю захватывающего открытия, сделанного в ходе программы BICEP2, и о последовавшей научной драме. Научный азарт и стремление разгадать тайну рождения Вселенной приводят автора в разные уголки земного шара — от Род-Айленда до Южного полюса, от Калифорнии до Чили, и в это путешествие, наполненное личными откровениями и глубокими прозрениями, он приглашает читателя. Китинг рисует яркую картину мира современной науки с его ожесточенной конкуренцией и нередкими разочарованиями. Он провокационно утверждает, что Нобелевская премия, вместо того чтобы способствовать научному прогрессу, иногда оказывается препятствием, поощряя в ученой среде конкуренцию и жадность, заставляя неоправданно торопиться с открытиями и тормозя смелые научные инновации.
Вдумчиво переосмысливая намерения Альфреда Нобеля, Китинг предлагает практические решения по реформированию премии и свое ви́дение научного будущего, в котором космологи смогут наконец-то заглянуть в начало времен.
Гонка за Нобелем. История о космологии, амбициях и высшей научной награде - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Я объяснил ему свои мысли по поводу применения новой технологии, которой занимались он и Ланге. Перед ними стояла задача разработать новые болометры для будущего спутника Planck, которые, в отличие от предыдущих паутинных детекторов, будут чувствительны к поляризации реликта. Эти новые болометры в сочетании с простым телескопом, используемым в эксперименте для моей диссертации (POLAR), могли бы измерять инфляционные B-моды. А главное, там должно быть много важной технической работы.
Я закинул удочку, но мне требовалась помощь. К счастью, почти одновременно со мной в Калтех пришел профессор Марк Каменковски, талантливый молодой физик-теоретик, один из авторов того самого «Руководства по изучению поляризации», которое весь прошлый год не выходило у меня из головы и отвлекало от обязанностей постдока в лаборатории Сары Чёрч. Каменковски помог мне составить несколько графиков, наглядно показывающих эффективность небольшого телескопа в охоте за B-модами.
Предлагаемый мной подход был привлекателен по ряду причин. Именно небольшой преломляющий телескоп позволил Галилею увидеть спутники Юпитера и таким образом получить решающий аргумент для опровержения геоцентризма. Каждый телескоп имеет предельное разрешение, от которого зависит наименьшая величина видимого им астрономического объекта. Разрешение зависит от диаметра линзы или зеркала телескопа и длины световых волн, которые он собирает. Диаметр телескопа для астрономов так же важен, как площадь недвижимости для риелторов, уступая только хорошему месторасположению. Но стоимость телескопов растет пропорционально не их диаметру, а площади, собирающей поверхности, т. е. пропорционально квадрату диаметра. Телескоп диаметром 60 см стоит в четыре раза дороже, чем телескоп диаметром 30 см. Умные астрономы строят телескопы ровно того размера, который позволяет уловить нужные им сигналы, и ни сантиметром больше.
Каменковски помог мне убедить Бока. Теперь нужно было, чтобы Бок помог мне убедить Ланге. Мы придумали, как преподнести идею в духе презентации в лифте: мы сделаем снимок новорожденной Вселенной в первые доли секунды после Большого взрыва с помощью небольшого телескопа-рефрактора, который одобрил бы сам Галилей — наш с Ланге общий кумир. И вот день нашего питча наступил. Едва мы выпалили свое предложение, Ланге прорвало: «Да это будет стоить несколько миллионов!»
Мое сердце остановилось. Ланге был прагматиком, который не покупался на «гениальные» идеи, особенно если те стоили миллионы долларов. Я был сокрушен; моя мечта умерла, не успев родиться. Но тут Ланге вздохнул и добавил: «Но идея хорошая… очень хорошая!» Он клюнул.
Его благословение имело решающее значение. Мы получили добро и приступили к работе. Убедившись, что телескоп действительно способен выполнить возлагаемую на него задачу, я придумал эксперименту броское название: «Фоновое отображение космической внегалактической поляризации» (Background Imaging of Cosmic Extragalactic Polarization), сокращенно BICEP — бицепс [25], мышца, необходимая для упражнений под названием «завихрения», как Каменковски, Артур Косовски и Альберт Стеббинс называли вихревой компонент поляризации, широко известный как B-моды.
Нашим вторым приоритетом были деньги. В отличие от Галилея, который ревностно оберегал свое изобретение от широкой огласки, у нас была противоположная задача: нам требовалось внимание. Первую заявку на финансирование мы с Ланге и Боком подали в 2002 году. Президент Калтеха (и лауреат Нобелевской премии по физиологии/медицине) Дэвид Балтимор стал нашим Козимо Медичи, согласившись профинансировать наш проект из средств президентского дискреционного фонда. Я абсолютно убежден, что без его финансовой поддержки наш эксперимент никогда бы не состоялся; астрономы привыкли считать, что чем больше телескоп, тем лучше. Наш эксперимент бросал вызов этой парадигме и казался слишком умозрительным, чтобы более консервативные федеральные агентства были готовы разделить этот риск. Вряд ли их стоит в этом винить. Даже Ланге часто шутил, что поиск B-мод поляризации в реликтовом излучении может оказаться охотой за призраками.
Вскоре после того, как мы получили финансирование, Ланге отправил меня в «рекламный тур», чтобы привлечь внимание к проекту BICEP. Он даже заставил меня поехать в Кону на Гавайи, где проходила астрономическая конференция. Это путешествие вылилось в мою первую научную статью, где впервые с момента открытия Йеркской обсерватории больше века назад описывалась новая конструкция рефрактора {2} .
BICEP: требуется сборка
Чтобы построить телескоп BICEP, нам потребовалось пять лет и 2 млн долларов. Вы тоже можете провести эксперимент с поляриметром — для этого на закате наденьте поляризационные солнцезащитные очки и поворачивайтесь вокруг себя, стоя на месте и глядя на зенит. Поскольку при рассеянии на молекулах воздуха свет поляризуется, вы заметите, что за один полный оборот яркость неба дважды меняется со светлой на темную и наоборот (рис. 42). Такое двукратное изменение яркости является характерным признаком поляризации.
Как и обычные солнцезащитные очки, все поляриметры включают четыре элемента: оптическую систему (у вас это хрусталик глаза), поляризационный фильтр, разделяющий вертикально и горизонтально поляризованный свет (ваши очки), детектор (сетчатка глаза) и поляризационный модулятор (ваши ноги, позволяющие вам вращаться), благодаря ему интенсивность света, проходящего через каждый поляризационный фильтр, меняется предсказуемо.
Все эти четыре компонента были и в BICEP. Его оптическая система состояла из 30-сантиметровых линз, изготовленных из полиэтилена высокой плотности (из подобного материала делают пластиковые бутыли для молока). Хотя нам эти контейнеры кажутся непрозрачными, они почти идеально пропускают микроволны. Две линзы обеспечивали четкую видимость в поле зрения порядка 20°, что эквивалентно двум кулакам, если держать их на расстоянии вытянутой руки.

Поляризационные фильтры и детекторы были объединены в так называемые поляризационно-чувствительные болометры (рис. 43). BICEP не требовались отдельные поляризационные очки и сетчатка, поскольку сами его детекторы предназначались для улавливания поляризации света. Каждый пиксель BICEP содержал два болометра: один для горизонтальной поляризации, другой — для вертикальной.
На самом деле наша сетчатка глаза состоит не из одного «детектора». Она насчитывает около 6 млн колбочковидных зрительных клеток, улавливающих частоту света и способных различать миллионы цветов, и 100 млн палочковидных зрительных клеток, позволяющих нам видеть самые слабые источники света, даже один фотон {3} . Как и человеческая сетчатка с ее миллионами колбочек и палочек, «сетчатка» BICEP имела большое количество детекторов. Конечно, по сравнению с человеческим глазом или даже камерой смартфона количество детекторов BICEP — 98 штук— казалось жалким. Но они были способны уловить, если нам повезет, следы первичных гравитационных волн в самом древнем свете во Вселенной. Такого не мог сделать ни один самый продвинутый смартфон.
Читать дальшеИнтервал:
Закладка: