Стивен Габсер - Маленькая книга о черных дырах [litres]

Тут можно читать онлайн Стивен Габсер - Маленькая книга о черных дырах [litres] - бесплатно ознакомительный отрывок. Жанр: sci-phys, издательство Издательство Питер, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Маленькая книга о черных дырах [litres]
  • Автор:
  • Жанр:
  • Издательство:
    Издательство Питер
  • Год:
    2019
  • Город:
    СПб
  • ISBN:
    978-5-4461-1049-0
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Стивен Габсер - Маленькая книга о черных дырах [litres] краткое содержание

Маленькая книга о черных дырах [litres] - описание и краткое содержание, автор Стивен Габсер, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Несмотря на сложность рассматриваемой темы, профессор Принстонского университета Стивен Габсер предлагает емкое, доступное и занимательное введение в эту одну из наиболее обсуждаемых сегодня областей физики. Черные дыры – это реальные объекты, а не просто мысленный эксперимент! Черные дыры исключительно удобны с точки зрения теории, так как математически они гораздо проще большинства астрофизических объектов, например звезд. Странности начинаются, когда выясняется, что черные дыры в действительности не такие уж черные.
Что же в действительности находится внутри них? Как можно представить себе падение в черную дыру? А может быть, мы уже падаем в нее и просто еще не знаем об этом?

Маленькая книга о черных дырах [litres] - читать онлайн бесплатно ознакомительный отрывок

Маленькая книга о черных дырах [litres] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Стивен Габсер
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Рис 22Схема опыта Паунда Ребки Фотоны испускаемые железом57 летят - фото 8

Рис. 2.2.Схема опыта Паунда – Ребки. Фотоны, испускаемые железом-57, летят вверх, преодолевая силу тяготения.

Наверху фотоприемник измеряет их гравитационное красное смещение.

Увеличение длины волны соответствует покраснению света.

Красное смещение в реальном эксперименте было гораздо меньше, чем показано на рисунке.

Из того, что мы узнали о замедлении времени в главе 1, мы могли бы подумать, что гравитационное красное смещение возникает по другой причине: при падении в гравитационный колодец все тела испытывают ускорение, а значит, их время замедляется. Но нет. Гравитационное красное смещение – нечто совсем другое, нечто совершенно новое. Ведь часы Паунда и Ребки покоились относительно Земли.

Гравитационное красное смещение происходит повсюду. Например, из-за него ваша голова стареет быстрее, чем пятки, – если, конечно, вы целыми днями не лежите на диване. Как и замедление времени, этот эффект численно очень мал и не сказывается на нашем ежедневном опыте: за время вашей жизни разница в возрасте головы и пяток составит несколько десятых долей микросекунды. Чтобы этот эффект стал более ярко выраженным, вам пришлось бы попасть в гораздо более сильное гравитационное поле, чем у Земли! Вот если бы при своих размерах Земля была бы черной дырой, а ваши пятки располагались бы всего в нескольких сантиметрах над ее горизонтом событий, вот тогда ваши пятки старились бы гораздо медленнее, чем голова, расположенная в метре над горизонтом. Конечно, опыт пребывания в такой среде был бы в буквальном смысле слова сногсшибательным. Но не забудем, что мы обсуждаем только абстрактную возможность.

Как включить идею о том, что тяготение обусловлено замедлением времени вблизи массивных тел, в описание обычных гравитационных явлений, таких как падение яблока или орбитальное движение планет? Для этого лучше всего подойдет высказывание, которое Вольтер вложил в уста своего Панглосса: «Все к лучшему в этом лучшем из миров». Во времена Вольтера ученые и математики, среди которых первым надо назвать Жозефа Луи Лагранжа, были убеждены, что движения массивных тел – падающих яблок и летящих по своим орбитам небесных тел – в некотором смысле происходят наилучшим возможным образом. Другими словами, постепенно ускоряющийся полет яблока с ветки к земле является как бы лучшим из всех возможных движений между исходным и конечным состояниями яблока. Великим достижением Лагранжа было то, что он сформулировал эту идею в точных математических терминах. В его описании любое представимое движение яблока между заданными начальным и конечным состояниями выражается через идею действия. Реальный способ движения, который «выбирает» яблоко, соответствует такому, при котором действие оказывается либо наименьшим, либо наибольшим. В любом случае действительное движение является лучшим в точно определенном математическом смысле.

Но для последователя Ньютона данное Лагранжем определение механики как задачи оптимизации покажется полным абсурдом. Как может неодушевленный объект «выбирать» оптимальный путь движения из множества возможных? По Ньютону, мир устроен совершенно иначе: предметы движутся по прямым линиям, пока на них не подействует сила, после чего их состояние движения изменяется в соответствии с законом F = ma . При чем же тут какая-то «оптимальность»? Но магия в том, что очень тщательно сконструировав для движущихся тел концепцию «действия», Лагранж сумел в точности воспроизвести законы Ньютона: ни больше, ни меньше. Да, надо признать, что выбор этой концепции был несколько парадоксальным. Но как только мы переходим к общей теории относительности, значение введенной Лагранжем формулировки становится очевидным. «Действием» объекта становится время, протекшее для наблюдателя, движущегося вместе с объектом. Движение, в действительности совершаемое объектом, оптимизирует собственное время, протекающее для этого объекта. Это принцип оптимального собственного времени. В случаях, которые мы будем рассматривать, собственное время максимально.

Один пример из специальной теории относительности поможет нам уточнить предмет нашего обсуждения.

(Не забудем, что в специальной теории относительности мы временно забываем о тяготении.) Этот пример называется парадоксом близнецов. Вот как он формулируется. У двух наблюдателей, которых мы, как обычно, назовем Алисой и Бобом, имеются совершенно одинаковые часы с секундомером. У Алисы есть звездолет и следующий план: она собирается улететь на нем от Боба на один день, двигаясь с постоянной скоростью (для определенности, равной половине скорости света), затем развернуться и возвратиться к Бобу. Боб тем временем останется на месте и не будет делать ничего. Если мы вспомним наше обсуждение собственного времени из главы 1, то сможем предвидеть результат этого эксперимента: длительность этого путешествия, измеренная Бобом по его часам, будет больше тех двух дней, которые пройдут для Алисы по ее часам. Точнее, при тех количественных данных, которые мы приняли, измеренное Бобом время путешествия Алисы составит примерно 2,3 дня.

Парадокс близнецов возникает вследствие следующего неверного рассуждения. Все движения относительны. Поэтому, с точки зрения Алисы, именно Боб улетел от нее, а потом вернулся. Разве она не должна точно так же, как и он, ожидать, что измеренное им время окажется меньше, чем по ее часам?

Чтобы увидеть, в чем недостаток этого рассуждения, нам следует точно определить различие между Алисой и Бобом: оно состоит в том, что Алиса испытала ускорение, когда разворачивалась, чтобы отправиться в обратный путь, а Боб этого не делал. Например, мы могли позволить Бобу свободно парить в пустоте в течение всего времени путешествия Алисы. С точки зрения Лагранжа, именно поведение Боба было «оптимальным», так как оно было абсолютно естественным и не требовало никакого внешнего вмешательства. Значит, то, что именно его собственное время оказалось большим, оправданно.

Есть замечательный вариант парадокса близнецов, в котором учитываются гравитационные эффекты (рис. 2.3). Допустим, что Алиса и Боб живут в глубоком гравитационном колодце, где они оба ходят в школу. У них трудное домашнее задание, которое им надо сдать через 48 часов, например, в 9:00 утра в понедельник. Из своего опыта с парадоксом близнецов Боб заключает, что больше всего времени на выполнение задания у него будет, если он станет как можно меньше двигаться. Поэтому он идет в школу очень медленным и спокойным шагом, все это время работая над своим заданием, и приходит туда в понедельник к 9:00 утра. Беспокойная Алиса соображает, что ей лучше прыгнуть в свою ракету и поскорее вылететь из гравитационного колодца: ведь отсутствие гравитационного красного смещения даст ей больше времени на выполнение задания. Но она опасается, что замедление времени, которое она испытает при полетах вверх и вниз, окажется более значительным. Согласно принципу оптимального собственного времени, чтобы максимизировать свое время, Алисе следует делать то, что при этих обстоятельствах делала бы инертная материя. А каково естественное поведение инертной материи? Она, как известно, любит покой! Получается, что план Боба минимизировать свои движения и идти в школу очень медленно правильный? Но все меняет присутствие тяготения. Вещество в гравитационном колодце вовсе не любит покоиться. Ему больше нравится падать. В присутствии тяготения для Боба вовсе не будет естественным тащиться в школу еле-еле: он может так поступать, только если находится на вершине какой-нибудь кучи вещества, которая в гравитационном колодце лежит еще глубже него. Если мы хотим, чтобы кусок инертного вещества отправился от дома Боба и Алисы в 9:00 утра в субботу и спустя 48 часов оказался бы у их школы, мы должны его запустить по изогнутой дугой траектории, чтобы ровно в 9:00 утра в понедельник он приземлился у школы. Сообразив все это, довольная Алиса залезает в свою ракету, жмет на газ, отчего ее ракета получает мощный импульс, на который уходит весь запас горючего, и весь остаток выходных летит по инерции, по дороге усердно работая над своим заданием [3] Вас может беспокоить, что на собственное время сильно повлияет исходное ускорение. По сути, исходя из принципа оптимального собственного времени, мы должны сравнивать траектории с одинаковыми начальным и конечным положениями, но, возможно, с различными начальными скоростями. Чтобы дать полное и точное объяснение парадокса близнецов и его гравитационного варианта, мы должны позволить Алисе иметь некоторую начальную скорость в момент, когда мы запускаем ее часы. А когда она возвращается в точку, где ее ждет Боб, она обладает некоторой конечной скоростью. Мы должны остановить часы в момент, когда Алиса и Боб встречаются, а значит, мы можем не беспокоиться о том, как именно она будет тормозить. . Ее ракета теперь не более чем баллистический снаряд, то есть, если не считать начального импульса на старте, она движется под действием только одной силы тяготения. Другими словами, она находится в состоянии свободного падения.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Стивен Габсер читать все книги автора по порядку

Стивен Габсер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Маленькая книга о черных дырах [litres] отзывы


Отзывы читателей о книге Маленькая книга о черных дырах [litres], автор: Стивен Габсер. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x