Вера Черногорова - Загадки микромира
- Название:Загадки микромира
- Автор:
- Жанр:
- Издательство:Молодая гвардия
- Год:1973
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вера Черногорова - Загадки микромира краткое содержание
Об этом и о том, что у них общего и чем они отличаются друг от друга рассказывается в книге В. Черногоровой.
Загадки микромира - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Подозрительность физиков возросла еще больше, когда всего за пять лет три десятка кирпичиков превратились в две сотни.
«Понятие элементарности потеряло свой первоначальный смысл, — так резюмировал ситуацию „взрыва рождаемости“ частиц физик-теоретик, лауреат Нобелевской премии, академик И. Тамм. — Сейчас мы не можем отличить истинно элементарные частицы от составных».
Не можем отличить? Но это, кажется, так просто! Если свободный нейтрон при радиоактивном распаде превращается в протон, электрон и нейтрино, следовательно, он, как карточный домик, сложенный из отдельных карт, построен из протона, электрона и нейтрино; а мю-мезон — из электрона и нейтрино.
Но так ли это в действительности? Если «что-то» состоит из отдельных частей, то с большей или меньшей затратой сил части эти всегда можно обнаружить. Атом, к примеру, содержит в себе электроны и тяжелое ядро. Затратив энергию в несколько десятков электрон-вольт, можно ионизировать атом, оторвав от него необходимое число электронов. Либо выбить из него ядро, как это делал еще Резерфорд, с помощью альфа-частиц.
Наконец, затратив в миллион раз большую энергию, можно расщепить и атомное ядро, щедро набитое протонами и нейтронами.
Словом, все объявляемые элементарными сущности материи сами же физики со временем разделяли, раскрывали, как деревянную матрешку. Заглянув внутрь, они всегда находили там более мелкие, еще более элементарные частицы материи.
Но как раскрыть элементарную частицу? Как узнать, из чего состоит, к примеру, протон? История поиска все более простых кирпичиков материи как будто подсказывает самый естественный ответ: надо стукнуть по элементарной частице как можно сильнее.
Некоторые физики так и поступают. Мишень из водородсодержащего вещества они облучают протонами больших энергий, получаемых на ускорителях. В конце 60-х годов на Дубненском синхрофазотроне они исследовали столкновение протонов с энергией в 10 миллиардов электрон-вольт с другими нуклонами. А сейчас в американском городе Батавия по мишени ускорителя бьют протонами с энергией в 40 раз большей.
Но до сих пор ни в одном эксперименте не удавалось выбить какую-нибудь «деталь» элементарной частицы, не удавалось обнаружить ее осколка. Во всех ядерных реакциях частица участвовала как единое целое. Оказывается, любая, самая ужасная катастрофа при столкновении в микромире обходится без единой «жертвы».

Так, может быть, элементарные частицы вообще нельзя разделить? И это совсем не простой карточный домик или матрешка?
В ответ на такой вопрос директор лаборатории высоких энергий Объединенного института ядерных исследований член-корреспондент АН СССР А. Балдин сказал:
«Говоря о структуре материи, мы исходим из привычного представления о делимости целого на отдельные части. Если же попробовать разорвать, разделить на кусочки элементарную частицу, то в результате появляются новые частицы. Самое поразительное в том, что из этой катастрофы первоначальная частица выходит, как птица Феникс из пепла, невредимой, тождественной своему исходному состоянию!»
Представим себе, что мы находимся около ускорителя протонов в Дубне. Все готово к сложному опыту. Укреплена мишень из водорода. Подан ток к магнитам ускорителя. Звуковой сигнал, красный свет предостерегающего табло — и все покидают экспериментальный зал.
В этом зале сейчас совершится не видимое никому, но реально регистрируемое приборами великое «таинство» микромира — рождение элементарных частиц в момент столкновения ускоренных протонов с протонами мишени.
Дежурный оператор включает высокочастотный генератор, и ускоритель начинает работать. При каждом его «выдохе» порция быстрых протонов прошивает мишень. Удар — и аппаратура мгновенно опознает пáры новорожденных близнецов. Либо это протон и антипротон, либо нейтрон и антинейтрон, либо же резонансы и быстрые пи-мезоны.

Все это происходит в Дубне. А в такой же мишени на Серпуховском синхрофазотроне рождается одновременно еще больше частиц и в еще более богатом ассортименте. Число частиц, таким образом, зависит лишь от энергии налетающего протона.
Изменится ли что-нибудь, если облучить нашу мишень не протонами, а другими частицами?
В Ереване недавно запущен синхротрон, дающий пучок фотонов с энергией в 5 миллиардов электрон-вольт, или в 5 Гэв. Но и в Ереване, на этом мощнейшем ускорителе электронов, приборы сообщают то же самое. Катастрофа столкновения фотона с протоном заканчивается без потерь для элементарных частиц. Она лишь сопровождается фейерверком новорожденных мезонов, нуклонов и антинуклонов. И количество их опять определяется энергией налетающего фотона.
В современных чувствительных приборах физики получают полную информацию о результатах ядерной катастрофы: сколько возникло частиц, какие именно и с какой энергией.
В случае, когда атомным снарядам не хватало энергии для рождения антинуклонов, антипротонов и антинейтронов, все было очень просто. Происходящая реакция подчинялась закону сохранения энергии и еще одному закону — закону сохранения числа нуклонов.
Но когда энергии ускоренных протонов стало хватать и на рождение антинуклонов, на первых порах началась неразбериха. Закон сохранения числа нуклонов перестал выполняться в ядерных реакциях. Казалось, что процесс рождения новых частиц подчинялся только закону сохранения энергии. Во всем же остальном он был совершенно стихийным.
Энергия, энергия и еще раз энергия! Неужели в микромире она правит безраздельно, не ограниченная никакими законами и правилами?
На первый взгляд кажется, что все именно так и происходит. Сшибаются два протона. В результате реакции столкновения нарождается несколько новых протонов, а также — на радость экспериментаторов — целый сонм антипротонов, нейтронов, антинейтронов и мезонов. Что-то вроде игры в рулетку — забрасываешь свой протон и ждешь, что она тебе в обмен выкинет.
Вскоре физики подметили, что в этой азартной игре не может выпасть произвольное число очков. Есть и в ней свои строгие правила.
Согласно этим правилам физики приписали каждому нуклону +1 очко, а антинуклону –1 очко. Мезоны получили 0 очков. Теперь даже первоклассник легко мог подсчитать, что во всех реакциях общее число очков до столкновения всегда было равно числу этих очков после столкновения.
Очки, которые получали нуклоны, антинуклоны и мезоны, физики назвали барионным зарядом этих частиц. Обнаруженное же правило игры — законом сохранения барионного заряда. Сколько бы ни сталкивались протоны с протонами, с нейтронами или с гамма-квантами, — после реакции возникало столько же новых нуклонов, сколько и антинуклонов.
Читать дальшеИнтервал:
Закладка: