Вера Черногорова - Беседы об атомном ядре
- Название:Беседы об атомном ядре
- Автор:
- Жанр:
- Издательство:Молодая гвардия
- Год:1976
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вера Черногорова - Беседы об атомном ядре краткое содержание
Беседы об атомном ядре - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Эти термоядерные установки — широко известная теперь дружина Токамаков. Их название было составлено из слов, обозначающих основные элементы установки: ток, камера, магнитные катушки — то-ка-ма-к. До последнего времени самым большим из них был Токамак-4, который создавал и удерживал лучшую плазму в мире.
Токамак не бьет по плазме мгновенным электрическим разрядом огромной мощности, не гоняет ее между магнитными пробками. Она свободно растекается в похожей на бублик камере вдоль силовых линий магнитного поля. Металлическая тороидальная камера, наполненная газообразным дейтерием, надета на железный сердечник. В таком сочетании она представляет собой вторичную обмотку трансформатора. Ток, возникающий в камере, разогревает газ и превращает его в плазму.
Плазма, отдаленная от стенок сжимающим ее магнитным полем тока, успевает уравновесить его давление своим собственным газовым давлением. Она превращается в кольцо, расположенное вдоль оси камеры. Но сколько времени оно может просуществовать?

Все зависит от того, насколько устойчив плазменный шнур, покоящийся на магнитных силовых линиях. Представьте себе подвешенное на ниточках в горизонтальной плоскости кольцо из очень мягкой резины. Оно деформируется: в тех местах, где укреплены ниточки, образуются перетяжки, а в промежутках между ними кольцо провисает.
Плазменный шнур — это разреженное облачко ионизированного газа, весящее всего лишь несколько десятков микрограммов. Кольцевая камера Токамака не что иное, как вакуумная камера. Газ, заполняющий ее, при атмосферном давлении весит в миллионы раз больше. Можно представить, как легко деформируется это эфемерное облачко плазмы удерживающим его магнитным полем.
В отличие от устойчивой деформации резинового кольца деформация плазмы, однажды возникнув, непременно нарастает: шнур теряет форму, и плазма гибнет на стенках камеры.
Если вставить в мягкое резиновое кольцо упругую стальную проволоку, оно станет более жестким. Роль такой упругой проволоки в плазменном шнуре Токамака выполняют силовые линии продольного магнитного поля, которое создается дополнительной катушкой, намотанной прямо на камеру. Замкнутые силовые линии этого поля имеют форму окружностей, параллельных плазменному шнуру. Они и создают тот магнитный «дом», в котором физики запирают горячую плазму: она лишается свободы, из-за которой раньше гибла.
Продольное магнитное поле так воздействует на частицы, что каждая из них начинает кружиться вокруг его силовой линии и может свободно перемещаться только вдоль нее. Движение поперек камеры законами электродинамики запрещено. Нарушивший этот запрет участок плазмы тащит за собой и силовые линии продольного магнитного поля, которые из-за коллективных свойств плазмы как бы прикреплены к ней. Распрямляясь, упругие силовые линии задержат нарушителя, и нарастание деформации прекратится.
Скорость потери энергии плазмы в советской установке Токамак оказалась в 50–60 раз меньше предрекаемой американским ученым Д. Бомом.
В 1968 году на конференции в Новосибирске Л. Арцимович сказал: «Мы освободились от мрачного призрака громадных потерь, воплощенного в формуле Бома, и открыли путь для дальнейшего повышения температур…»
Это была серьезная победа советской плазменной школы. Потребовалось десять лет кропотливой работы и совместных усилий экспериментаторов и сотрудников теоретического сектора, возглавляемого академиком М. Леонтовичем, для того, чтобы плазма действительно стала чувствовать себя в Токамаке «как дома».
Окруженная двойной магнитной сеткой плазма не оставляла попыток проскочить сквозь нее. Для отдельных заряженных частиц комбинация магнитных полей в Токамаке — идеальная магнитная ловушка. Но для коллектива частиц плазмы это далеко не так. Тут на руку плазме играла даже форма камеры.
Плазма в тороидальной камере представляет собой проводящий виток с током. А каждый уважающий себя виток, находясь в магнитном поле, стремится растянуться, как свернутая стальная пружина. Развертываясь, плазменный шнур может коснуться стенок и погибнуть.
К счастью, с этой бедой Токамак автоматически справляется сам. Ток, текущий по плазме, окружает ее магнитным одеялом. Оно-то и касается стенок раньше плазмы. Силовые линии, пересекая толстую металлическую стенку камеры, наводят в ней ток (так называемый ток Фуко), обратный по направлению току в плазме. А противоположные токи всегда отталкиваются. Поэтому плазменный виток вместо соприкосновения со стенкой отшатывается от нее.
Долго физики пестовали плазму в Токамаке. Из года в год они все сильнее подавляли «микробы» неустойчивости, сокращавшие жизнь горячей плазмы. Упорная борьба с ее болезнями и недомоганиями привела к большому успеху: в Токамаке была выращена практически устойчивая плазма. Но, даже находясь как будто в устойчивом, равновесном состоянии, горячая плазма все равно живет недолго, так как подвержена всякого рода случайностям. Она, если так можно сказать, куда чувствительнее принцессы на горошине. Под магнитной периной в 40 тысяч эрстед она ощущает слабое дополнительное поле даже в десять эрстед, случайно оказавшееся поблизости. Кончается это плохо — возмущенная плазма выходит из состояния равновесия и попадает на стенки камеры.
Беда еще и в том, что плазма все-таки теряет полученную энергию. Между плазмой и стенками камеры — огромный перепад температуры. Несмотря на то, что сама камера тоже горячая, раскаленной до миллионов градусов плазме она кажется ледяной. Подчиняясь закону теплопроводности, горячие частицы плазмы все время стремятся передать энергию холодным стенкам. Заряженные электроны и ядра дейтерия, вращаясь вокруг силовых линий продольного магнитного поля, сталкиваются друг с другом и в результате перескакивают с одной силовой линии на другую. Так почти незаметно для магнитного поля частицы достигают стенок и отдают им немалую часть энергии плазмы.
Плазма, живущая в Токамаке, предъявляет к своему дому очень высокие требования. Он должен быть абсолютно чист. Поэтому перед каждым опытом камеру тщательно чистят: долго откачивают воздух при высокой температуре. Но даже считанные атомы тяжелых элементов, застрявшие там, сваливаются со стенок и сильно охлаждают плазму. На таком атоме ворох электронных одежд. Снимая их — ионизируя атом, — плазма опять теряет энергию.
О качестве выращенной плазмы можно судить только после того, как станут известны температура ее ионов и электронов и плотность частиц. Измерить эти величины в веществе, находящемся в четвертом состоянии, очень трудно. Как подобраться к плазме, аккуратно спеленатой двумя магнитными полями, висящей в глубоком вакууме, спрятанной от экспериментаторов в камере с двойными металлическими стенками? Она все время рядом, но существует как будто в другом мире!
Читать дальшеИнтервал:
Закладка: