Анна Ливанова - Физики о физиках
- Название:Физики о физиках
- Автор:
- Жанр:
- Издательство:Издательство ЦК ВЛКСМ «Молодая гвардия»
- Год:1968
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Анна Ливанова - Физики о физиках краткое содержание
Их воспоминания о прошедшем, о зарождении и судьбе открытий и о встречах с выдающимися учеными послужили первоосновой, на которой А. Ливанова создала портреты корифеев науки — эти портреты мы и представляем читателям.
Физики о физиках - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Уже специальный принцип относительности подорвал основы теории всемирного тяготения. Одно из главных следствий этого принципа гласило, что скорость распространения света в пустоте вообще является предельной скоростью любых реальных процессов, протекающих в природе. Ни одно тело не может двигаться быстрее, ни один сигнал не может распространяться скорее, чем свет в пустоте.
Значит, никакого мгновенного действия вообще быть не может! Не может быть мгновенного дальнодействия и в теории тяготения Ньютона. Влияние массы одного тела на массу другого распространяется с конечной скоростью. И передается это влияние посредством поля. Подобно тому как вокруг движущихся электрических зарядов создается электромагнитное поле, так в пространстве, окружающем всякое тело, создается поле тяготения. На смену идее мистического дальнодействия пришло убеждение в существовании совершенно реального, физически реального гравитационного поля.
Общая теория относительности Эйнштейна и есть новая теория тяготения.
Вся безграничная вселенная наполнена телами, будь то гигантские звезды или частицы космической пыли. Массы этих тел — величина масс, их взаимное расположение, их относительное движение — создают поля тяготения, гравитационные поля.
Гравитационные поля существуют и меняются в пространстве и во времени. И свойства этих полей накладывают неизгладимый отпечаток на то пространство и на то время, в котором они существуют. Эйнштейн показал, что это значит. «Неизгладимый отпечаток» проявляется физически в том, что тяготеющие массы искривляют четырехмерный мир пространства-времени, в котором движутся тела. В свою очередь, это искривленное пространство-время — поле тяготения определяет движение масс, их траекторию, их скорость.
Так теория относительности объяснила движение всех масс, всей материи — от лучей света до звездных галактик. Объяснила открытой ею «обратной связью» космических масштабов: движение масс вызывается искривлением пространства, искривление пространства вызывается населяющей его материей. Или — массы рождают поле, поле управляет движением масс.
В этом суть закона всемирного тяготения Эйнштейна, такая «обратная связь» существует в любом доступном наблюдению уголке вселенной.
Геометрия такого искривленного четырехмерного мира уже не будет эвклидовой. Правда, «отклонение от эвклидовости» пространства очень невелико даже вблизи огромных масс. Тем не менее именно оно, это отклонение, определяет всю картину строения вселенной.
Ясно, что и вопрос о трехмерной геометрии, о структуре нашего реального пространства становится чисто физическим, как это более ста лет назад предсказывали Лобачевский и Риман.
Объяснив, что происходит во вселенной, общая теория относительности стала перед новой задачей: ей предстояло теперь определить строение всей вселенной в целом. Такой путь развития эйнштейновской теории был вполне закономерен. И так же закономерно, что первый шаг на этом пути сделал сам Эйнштейн. В 1917 году появилась его работа «Вопросы космологии и общая теория относительности».
Ньютон полагал, что пространство наше бесконечно и бесконечно число звезд, его населяющих. Если бы число звезд было конечным, то, по расчетам, сила взаимного притяжения заставила бы их собраться воедино, в гигантский звездный клубок, а этого ведь не случилось. Но, с другой стороны, бесконечное количество равномерно распределенных в ньютоновом пространстве звезд должно было бы создавать яркую и равномерную освещенность всего неба, а ведь и этого на самом деле тоже нет.
Кроме того, из расчетов следовало, что в бесконечности само тяготение должно возрастать бесконечно, а такое не может не вызвать огромной скорости движения небесных тел. Это так называемый «гравитационный парадокс», который привел в большое смущение физиков, потому что на опыте ничего подобного не наблюдалось.
Трудности, рожденные бесконечностью вселенной, трудности, поначалу казавшиеся столь же неразрешимыми, встали и перед Эйнштейном. Но выход надо было найти. И Эйнштейн искал — мучительно и напряженно.
В конце концов, чтобы обойти эти трудности, Эйнштейн предложил рассмотреть иную возможную форму нашей вселенной — конечную, пространственно-замкнутую.
Он говорил: «…развитие неэвклидовой геометрии привело к осознанию того факта, что можно сомневаться в бесконечности нашего пространства, не вступая в противоречие с законами мышления и с опытом». И что «…мыслимы замкнутые пространства, не имеющие границ. Среди них выделяется своей простотой сферическое пространство, все точки которого равноценны. Отсюда перед астрономами и физиками возникает чрезвычайно интересный вопрос: является ли мир, в котором мы живем, бесконечным или же он, подобно сферическому миру, конечен? Наш опыт далеко не достаточен для ответа на этот вопрос. Однако общая теория относительности дает возможность ответить на этот вопрос со значительной достоверностью».
Математический аппарат общей теории относительности крайне сложен. Это и понятно. Ведь с его помощью следует описать отношения между геометрией пространства вселенной и населяющей его материей. Эти отношения называются уравнениями поля тяготения.
В них входят, с одной стороны, величины, связанные со строением пространства, его кривизной и метрикой. Метрикой данного пространства называется закон измерения расстояний в нем. К примеру, на плоскости расстояние между двумя точками измеряется отрезком прямой, проходящей через эти точки, а на сфере — дугой большого круга. Очевидна однозначная связь между метрикой и кривизной. То же самое, естественно, справедливо и для пространства любой кривизны.
С другой стороны, в уравнения поля тяготения входят характеристики материи и прежде всего ее плотность.
Никто еще — ни сам Эйнштейн, ни его последователи — не был в состоянии решить задачу во всей ее сложности. На данном этапе, на данном уровне науки это неосуществимо. Но физики и математики знают способы упрощенных и приближенных решений.
Таким был и подход Эйнштейна. Во-первых, он предположил, что средняя плотность материи во вселенной постоянна.
Правомочно ли это? Стоит взглянуть на ночное небо, и невольно начинаешь сомневаться; ведь звезды — сгустки огромной массы — рассеяны в пустом от материи пространстве, отделены друг от друга гигантскими подчас расстояниями. А насколько еще больше расстояния между галактиками! Между скоплениями галактик! Но все-таки Эйнштейн имел право сделать такое предположение, имел право считать среднюю плотность материи постоянной. И вот почему.
Астрономы установили важный факт. Вселенная наша приблизительно равномерно заполнена галактиками, а плотность самих галактик, по-видимому, постоянна! Поэтому если перейти к таким огромным масштабам, то можно считать постоянной среднюю плотность материи в доступной нам части вселенной.
Читать дальшеИнтервал:
Закладка: