Сергей Попов - Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной
- Название:Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2018
- Город:Москва
- ISBN:978-5-9614-5048-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Попов - Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной краткое содержание
Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
У более массивных звезд (примерно 10–80 масс Солнца, точные значения плохо известны и зависят от множества параметров) коллапсирует железное ядро. Внутренние части звезды теряют устойчивость не по причине падения давления, а потому что при сжатии оно теперь растет медленнее, чем это необходимо для восстановления равновесия. Например, это может происходить из-за диссоциации (деления) ядер железа фотонами или из-за захвата электронов ядрами, но теперь все начинается не с магния и неона, а с элементов группы железа.
Коллапс ядра продолжается, пока не достигается ядерная плотность. В этот момент происходит так называемый отскок (bounce). Упругость внутренних частей резко возрастает, а внешние части падают на них, и происходят два события. Во-первых, наружу начинает двигаться ударная волна. Во-вторых, запускаются урка-процессы [4] Урка-процессы – это процессы уноса энергии из ядра звезды с помощью нейтрино. Впервые этот механизм был предложен в 1940 г. Георгием (Джорджем) Гамовым и Марио Шёнбергом (Mario Schenberg). Происхождение названия Гамов объяснил в своей книге «Моя мировая линия: Неформальная биография» (М.: Наука, 1994): «Мы назвали его урка-процессом, отчасти чтобы отметить казино, в котором мы впервые встретились, и отчасти потому, что урка-процесс приводит к быстрой откачке тепловой энергии изнутри звезды, подобно быстрому исчезновению денег из карманов игроков в Казино да Урка».
, при которых протоны захватывают электроны (а нейтроны – позитроны), при этом испускаются нейтрино (или антинейтрино).
Основная энергия при коллапсе связана со сжатием ядра, т.e. с выделением гравитационной потенциальной энергии. Изначально, до начала коллапса, ядро похоже на белый карлик и при массе около 2 солнечных имеет размер порядка нескольких тысяч километров. В результате катастрофического сжатия до размеров в десятки километров выделяется огромная энергия, превосходящая 10 53эрг (10 46Дж). В основном эта энергия переходит именно в нейтрино, которые из-за высоких температуры и плотности какое-то время «заперты» внутри звезды (она для них непрозрачна). Чтобы произошел взрыв, нужно передать эту энергию ударной волне. Сделать это непросто, и в настоящее время продолжаются дискуссии о том, как это происходит. Основной гипотезой долгое время была именно передача энергии от нейтрино расширяющейся оболочке, но сейчас рассматриваются и другие варианты, в которых важную роль играет магнитное поле или другие процессы.
Массивные звезды с массами менее 30 масс Солнца в основном дают нейтронные звезды.
Как бы то ни было, мы наблюдаем сверхновые, а значит, условия для взрыва создаются. Кинетическая энергия расширяющегося вещества составляет около 10 51эрг (10 44Дж) – примерно 1 % от полной энергии сверхновой. Чтобы при этом наблюдалась яркая вспышка, часть энергии должна выделяться в видимом диапазоне. Для этого есть несколько возможностей.
Во-первых, ударная волна, проходя сквозь внешние части звезды, нагревает их. Затем эта энергия постепенно высвечивается в видимом диапазоне. Во-вторых, в результате взрыва сверхновой (это особенно важно для сверхновых Ia, где нет внешней оболочки, в которой можно было бы запасти энергию) создается большое количество радиоактивных элементов, прежде всего никеля-56 ( 56Ni). Этот элемент затем превращается в кобальт-56 и наконец в стабильное железо-56. При этом выделяется энергия, которую мы и видим как вспышку сверхновой со спаданием блеска иногда в течение сотен дней после достижения максимума. Как правило, высвечиваемая энергия меньше кинетической энергии взрыва.
Коллапс связан с невозможностью поддерживать гидростатическое равновесие в ядре.
Иногда коллапс не останавливается – тогда рождается черная дыра. Этот процесс не сопровождается взрывом. Недавно появились первые непосредственные наблюдательные свидетельства в пользу этого: обнаружено исчезновение массивных звезд, не сопровождаемое вспышкой. Возможен и промежуточный случай. Коллапс останавливается – появляется протонейтронная звезда, происходит взрыв, но на компактный объект продолжает выпадать вещество. Если масса его дорастет до критической, то произойдет коллапс в черную дыру. Если же выделение энергии при отскоке окажется слишком незначительным, тогда взрыв не произойдет, а выпадение большой массы на появившийся компактный объект приведет к формированию черной дыры.
Энергия сверхновой с коллапсом ядра связана с выделением гравитационной потенциальной энергии.
Наконец, очень массивные звезды (примерно 150–260 масс Солнца) дают особый вид сверхновых без остатка. Это сверхновые с рождением пар. В кислородных ядрах таких звезд температура вырастает настолько, что энергии фотонов оказывается достаточно для рождения электрон-позитронных пар. Энергия идет не на поддержание давления, а на рождение новых частиц, и в результате начинается коллапс, поскольку нарушается гидростатическое равновесие. Если масса звезды не слишком велика, то термоядерное горение кислорода может остановить коллапс, и тогда очень мощный взрыв разносит всю звезду без остатка. Если же звезда очень массивна, то образуется черная дыра.
Звезды с массами от 30 до 150 масс Солнца в основном порождают черные дыры.
Последние стадии жизни очень массивных звезд, предшествующие окончательному взрыву из-за рождения пар, могут сопровождаться пульсациями с очень большим выделением энергии. По светимости они соответствуют сверхновым, но полное энерговыделение при таких пульсациях, конечно, меньше, поскольку не происходит сильного сжатия (т.e. нет выделения большой гравитационной потенциальной энергии) и рождения нейтрино.
Звезды от 150 до 260 масс Солнца могут взрываться без остатка.
В последние годы обнаружено много необычных сверхновых с очень высокой светимостью или нестандартной кривой блеска. Для их объяснения привлекаются различные механизмы. Отметим среди них дополнительное выделение энергии в результате образования быстро вращающейся нейтронной звезды с сильным магнитным полем. Замедляя свое вращение (как экстремальный радиопульсар), такой объект может поставлять дополнительную энергию, сравнимую с полной кинетической энергией взрыва.
Сверхновые типа Ia – это термоядерный взрыв массивного белого карлика.
Если сверхновые, связанные с массивными звездами, могут быть очень разными, то сверхновые типа Ia, наоборот, очень похожи друг на друга. Это связано с тем, что взрываются очень похожие объекты – сверхкритические белые карлики.
Известно, что для белых карликов существует верхний предел массы, называемый чандрасекаровским. Однако по мере роста массы еще до достижения этого предела в недрах компактного объекта могут сложиться условия для термоядерного горения углерода. Поскольку белый карлик состоит из вырожденного вещества, то он не может быстро отреагировать на выделение энергии и восстановить равновесие. Поэтому происходит термоядерный взрыв, полностью разрушающий звезду.
Читать дальшеИнтервал:
Закладка: