Сергей Попов - Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной
- Название:Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2018
- Город:Москва
- ISBN:978-5-9614-5048-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Попов - Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной краткое содержание
Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Белые карлики могут очень быстро вращаться. Самые быстрые из них имеют периоды (т. е. «сутки») меньше минуты, и при размере объектов, сравнимом с размером Земли, скорость на экваторе достигает тысячи километров в секунду (порядка процента от скорости света!). Кроме того, белые карлики могут образовать очень тесную двойную систему с большой орбитальной скоростью. Рекорд принадлежит системе HM Рака, где «год» длится около 5 минут, т. е. орбитальная скорость превосходит миллион километров в час. Такая система должна быть мощным источником гравитационных волн, которые можно будет зарегистрировать с помощью космического лазерного интерферометра, такого как проект eLISA (Evolved Laser Interferometer Space Antenna, Усовершенствованный космический лазерный интерферометр).
Первые обнаруженные белые карлики являются компонентами двойных систем. Впоследствии оказалось, что двойственность белых карликов может приводить к важным последствиям: взрывам и синтезу элементов.
В достаточно тесных системах на некоторой стадии эволюции вещество может начать перетекать с одной звезды на другую – начинается аккреция. Захват вещества белым карликом приводит к появлению интересных источников излучения. Падение 1 г вещества на белый карлик приводит к выделению примерно 10 млрд Дж энергии, поэтому поток газа с нормальной звезды на компактную является причиной мощного излучения. Есть несколько типов источников, связанных с аккрецией на белые карлики: например, поляры. Свое название они получили благодаря сильной поляризации их излучения, что связано с мощными магнитными полями белых карликов.
В нашей Галактике находятся десятки миллиардов белых карликов.
Магнитные поля белых карликов могут достигать очень больших величин – в миллиард раз больших, чем у Солнца. Впрочем, подобные объекты редки, однако даже типичные белые карлики могут иметь сильные магнитные поля, в тысячи и даже в миллионы раз больше солнечных.
Поляры относятся к катаклизмическим переменным звездам. Как следует из их названия, эти источники показывают большие вариации блеска. Но среди них есть источники, чья переменность имеет действительно катастрофический характер, – это так называемые новые звезды.
Вспышка новой – это термоядерный взрыв на поверхности аккрецирующего белого карлика в двойной системе.
Во время вспышки новой блеск системы может возрасти в миллионы раз. Без мощных телескопов это выглядит как появление новой звезды на небе, отсюда и название, которое еще в XVI в. дал этим объектам Тихо Браге (Tycho Brahe) (правда, наблюдал он то, что мы теперь называем сверхновой, но понадобились сотни лет, чтобы разобраться в этом). Затем блеск на протяжении нескольких месяцев спадает, возвращаясь к первоначальному значению. Вспышка новой – это термоядерный взрыв на поверхности белого карлика. Вещество, перетекающее на него со звезды-соседки, состоит из водорода и гелия. По мере накопления вещество уплотняется и разогревается, пока наконец не достигаются условия для начала термоядерной реакции – и тогда происходит взрыв. Чаще всего мы наблюдаем именно термоядерное горение водорода (в нашей Галактике это происходит примерно полсотни раз в год, хотя не все случаи удается зарегистрировать), но могут происходить и вспышки, связанные с горением гелия.
Если на белый карлик течет достаточно много вещества, то, казалось бы, он может быстро нарастить свою массу, достичь предела (близкого к чандрасекаровской массе) и взорваться. Однако чаще всего такой процесс занимает много времени из-за вспышек новых (или их аналогов). При этом почти все накопленное вещество сбрасывается, и процесс начинается сначала. Однако существуют двойные системы, чья эволюция в конце концов завершается взрывом белого карлика.
Сейчас полагают, что основная часть сверхновых типа Ia происходит при слияниях белых карликов, чья суммарная масса превосходит предельную (если суммарная масса ниже, то просто образуется массивный быстровращающийся белый карлик, возможно, с сильным магнитным полем). В галактике вроде нашей они случаются раз в две-три сотни лет. Такие сверхновые являются важным поставщиком тяжелых элементов, поскольку обычно происходит полный разлет вещества звезды (в отличие от сверхновых с коллапсом ядра, где значительная масса остается в виде компактного объекта – нейтронной звезды или черной дыры). Кроме того, эти сверхновые важны для космологических наблюдений, они дают возможность определить расстояние до галактик, в которых находятся. Именно наблюдения сверхновых типа Ia позволили в 1998 г. открыть ускорение расширения Вселенной, которое мы связываем с действием темной энергии (см. раздел 11.6 «Ускоренное расширение Вселенной. Темная энергия. Будущее Вселенной»).
Сверхновые типа Ia – это взрыв белого карлика.
Если суммарная масса слившихся карликов заметно больше чандрасекаровской, то сверхновая получается особенно мощной, поскольку в реакциях принимает участие бóльшая масса. Такие вспышки тоже наблюдаются астрономами.
Иногда в результате коллапса белый карлик может превращаться в нейтронную звезду.
Хотя чаще всего белый карлик полностью взрывается, набрав большую массу, иногда может происходить коллапс с образованием нейтронной звезды; для этого карлик должен добраться до чандрасекаровского предела и не взорваться. Это возможно с изначально массивными объектами, состоящими из кислорода, неона и магния. Нейтронные звезды могут, по-видимому, возникать и при слияниях двух массивных белых карликов, и при постепенной аккреции на карлик в двойной системе.
Особую роль в астрофизике играют системы, состоящие из белого карлика и радиопульсара. В таких парах наблюдаются самые массивные из известных нейтронных звезд.
6.2. Нейтронные звезды
Нейтронные звезды – это компактные объекты, состоящие из вырожденного нейтронного вещества. Свободные нейтроны нестабильны и распадаются на протон и электрон с испусканием антинейтрино (бета-распад с периодом полураспада чуть более 10 минут). Но в некоторых условиях, в частности в недрах нейтронных звезд, нейтроны становятся стабильными и перестают распадаться. Обычно под названием «нейтронные звезды» объединяют целый класс компактных объектов, к которым относятся также кварковые звезды, гиперонные звезды и другие типы объектов со схожими характеристиками и историей образования.
Нейтронные звезды являются финальной стадией эволюции массивных звезд. Звезды с начальными массами примерно от 10 до 30 солнечных масс, исчерпав термоядерное горючее, претерпевают коллапс ядра, который сопровождается вспышкой сверхновой. В итоге образуется компактный объект с массой с массой 1–2 солнечных [масс] и радиусом 10–15 км.
Читать дальшеИнтервал:
Закладка: