Сергей Попов - Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной
- Название:Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2018
- Город:Москва
- ISBN:978-5-9614-5048-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Попов - Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной краткое содержание
Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В вопросе происхождения и эволюции сверхмассивных черных дыр есть еще много неясностей. Наверняка реализуется механизм, в котором все начинается с массивных звезд населения III (самые первые звезды во Вселенной). Благодаря особенностям химического состава (практически полное отсутствие элементов тяжелее гелия) они могли достигать масс в сотни солнечных, а в конце своей жизни превращались в черные дыры с массой около 200 солнечных. Затем в процессе иерархического скучивания эти черные дыры попадали в формирующиеся галактики и довольно быстро, будучи массивными объектами, оседали в их центральных частях, где за счет аккреции (и иногда слияния с другими черными дырами) их масса постепенно росла. Постепенно росла и масса центральной сферической составляющей галактики (это объясняет корреляцию массы черных дыр с массами балджей). Таким путем можно к настоящему времени нарастить массу до миллиардов масс Солнца.
Масса черной дыры в центре нашей Галактики (около 4 млн масс Солнца) определена с помощью непосредственного наблюдения движения звезд вокруг нее.
Однако такой механизм не объясняет существования массивных черных дыр спустя всего лишь сотни миллионов лет после начала формирования звезд и галактик. Такие объекты известны, например, благодаря наблюдениям очень далеких мощных квазаров. Для их объяснения нужны бóльшие начальные массы «затравочных» черных дыр. Это возможно, если происходит коллапс достаточно больших газовых облаков, дающих в итоге черные дыры с массами в тысячи и десятки тысяч солнечных. Такие объекты, попав в центральные части галактик, могут достаточно быстро (за сотни миллионов лет) нарастить массы до миллиарда солнечных, объяснив тем самым существование активных ядер высокой светимости в первый миллиард лет жизни Вселенной.
Наконец, существует сценарий, в котором массивные черные дыры формируются за счет эволюции плотных скоплений звезд в ядрах галактик. После достижения некоторой критической плотности в центре скопления звезды начинают активно сливаться друг с другом, что в итоге приводит к появлению черной дыры.
Сверхмассивные черные дыры поглощают не только окружающий газ, но и звезды, планеты и другие объекты. Некоторые из них могут быть разорваны приливными силами при приближении к горизонту (если только объект не является очень прочным, как, например, нейтронная звезда или белый карлик, а дыра – слишком массивной; хотя даже очень плотные объекты будут разорваны приливными силами внутри черной дыры при приближении к сингулярности, но это пройдет незамеченным для внешнего наблюдателя – внутри горизонта). Такие события наблюдаются как рентгеновские вспышки, они могут длиться месяцами или годами, по мере того как вещество разрушенной звезды образует диск вокруг черной дыры и постепенно аккрецирует на нее. Отсутствие мощного излучения, связанного с контактом падающего вещества и поверхности, является дополнительным аргументом в пользу наличия горизонта у сверхмассивных объектов в галактических центрах.
При слиянии двух черных дыр получившаяся черная дыра может приобрести скорость в сотни километров в секунду. Это так называемый эффект гравитационно-волновой ракеты.
Начиная с конца 1960-х – начала 1970-х гг., с работ Дональда Линден-Белла (Donald Lynden-Bell), астрономы полагают, что в центре каждой галактики с достаточно крупным балджем должна находиться сверхмассивная черная дыра. Наблюдения в целом подтверждают эту картину.
Однако в редких случаях сверхмассивные черные дыры могут покидать центральные части галактик. В результате слияния двух черных дыр происходит излучение гравитационных волн, которые уносят энергию и импульс из системы. Если массы дыр не равны, этот процесс не будет симметричным. После слияния получившаяся дыра приобретает импульс (выполнение закона сохранения импульса достигается тем, что равный и противоположно направленный импульс унесен гравитационными волнами). Такой эффект гравитационно-волновой ракеты может разогнать объект до скоростей в сотни километров в секунду, что достаточно для покидания центральной части галактики. А если масса галактики невелика, то объект может полностью ее покинуть.
Две черные дыры могут оказаться в центре галактики в результате слияния двух звездных систем, каждая из которых имела по сверхмассивной черной дыре. На определенном этапе эволюции это достаточно частый процесс, и в настоящее время известны наблюдаемые кандидаты в двойные сверхмассивные черные дыры. По мере сближения эти объекты испускают гравитационные волны, а в момент слияния происходит мощный гравитационно-волновой всплеск. Для обнаружения таких событий планируется создать космический эксперимент eLISA, подобный наземным установкам LIGO и Virgo (назван в честь созвездия Девы). Также свой вклад в поиск длинноволнового гравитационного излучения от пар сверхмассивных черных дыр могут внести астрометрические наблюдения и тайминг миллисекундных радиопульсаров.
Исследование непосредственных окрестностей сверхмассивных черных дыр сопряжено с большими трудностями. Два наиболее исследованных объекта – это черная дыра в центре нашей Галактики (сверхмассивная и самая близкая, поэтому ее угловой размер достаточно велик), а также черная дыра в галактике М87 (сочетает очень большую массу с относительно небольшим расстоянием от нас).
Черная дыра в центре галактики М87 имеет массу 4–5 млрд масс Солнца. До этой галактики примерно 50–55 млн световых лет.
Изучение окрестностей черных дыр возможно в радиодиапазоне методами интерферометрии. С этой целью создан проект Event Horizon Telescope, объединяющий несколько инструментов, разбросанных по всему земному шару. Наблюдения в миллиметровом диапазоне с помощью этой системы телескопов позволяют изучать ближайшие (несколько радиусов черных дыр) окрестности Sgr A* и М87. Свой вклад смогут внести и космические проекты, в которых один из радиотелескопов, составляющих интерферометрическую систему, находится на расстоянии в сотни тысяч километров от Земли.
Первым успешным проектом такого типа является «Радиоастрон», основой которого является российский спутник «Спектр-Р».
7.4. Первичные черные дыры и испарение Хокинга
В настоящий момент в астрономических наблюдениях мы не можем непосредственно исследовать области, прилегающие к горизонту событий. Кроме того, современные физические теории не позволяют с достаточной точностью и надежностью одновременно учитывать эффекты квантовой физики и сильного искривления пространства-времени. Это приводит к тому, что в физике черных дыр остается много неясного, и разные теоретические подходы предлагают очень разные ответы. В еще большей степени это применимо к недрам черных дыр, откуда информация принципиально не может попасть во внешний мир. Существуют разные модели объектов, которые мы объединяем под общим термином «черные дыры» и которые с астрофизической точки зрения выглядят как классические черные дыры ОТО.
Читать дальшеИнтервал:
Закладка: