Сергей Попов - Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной
- Название:Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2018
- Город:Москва
- ISBN:978-5-9614-5048-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Попов - Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной краткое содержание
Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Характерный размер элементов крупномасштабной структуры – 400–500 млн световых лет.
Сверхскопления связаны с филаментарной (волокнистой) структурой Вселенной. Гигантские филаменты, в которых в основном сконцентрировано вещество, текущее в направлении скоплений и сверхскоплений, которые находятся на пересечении волокон, имеют размеры до миллиардов световых лет. Мы знаем о филаментарной структуре по наблюдениям галактик и горячего межгалактического газа, однако в 2012 г. Йорг Дитрих (Jörg P. Dietrich) с соавторами заявил о первой идентификации волокна крупномасштабной структуры, состоящего из темного вещества. Это удалось сделать благодаря использованию метода слабого гравитационного линзирования: было показано, что между скоплениями галактик Abell 222 и Abell 223 сосредоточена большая масса, но при этом там не наблюдается достаточного количества галактик или газа для ее объяснения. Размер этого волокна составляет более 10 млн световых лет, а его масса достигает примерно 1014 солнечных масс, что сопоставимо с массами скоплений галактик. Совсем недавно, в 2017 г., статистический анализ большого количества пар массивных галактик, отмечающих положение богатых групп, позволил получить надежные аргументы в пользу существования волокон темного вещества и между такими объектами.
Скопления галактик образуются в основном на z ≈ 2 и продолжают расти в наши дни.
Филаменты очерчивают гигантские пустоты – войды. Они были идентифицированы в 1978 г. трудами нескольких групп астрофизиков – Гуидо Кинкарини (Guido Chincarini), Стефана Грегори (Stephen Gregory) и Лэрда Томпсона (Laird Thompson), а также эстонских астрофизиков под руководством Яана Эйнасто (Jan Einasto). Войды имеют характерные размеры до 500 млн световых лет, что связано с так называемыми барионно-акустическими осцилляциями в ранней Вселенной незадолго до эпохи рекомбинации. Эти осцилляции связаны с флуктуациями плотности, существовавшими уже на момент рекомбинации, затем они росли, растягивались из-за расширения пространства и стали основой для формирования структуры Вселенной, задав характерный масштаб неоднородности в распределении галактик.
На z < 1 эволюция филаментов практически останавливается, а скопления продолжают эволюционировать, хотя и их рост замедляется из-за начала доминирования темной энергии. Формирование скоплений очень чувствительно к космологическим параметрам, поскольку они находятся на границе между уже сформировавшимися гравитационно-связанными структурами и теми, которые никогда не сколлапсируют из-за темной энергии.
Изучение формирования крупномасштабной структуры – существенная часть современных астрономических исследований, объединяющая несколько областей физики и астрофизики. Первой важной работой в этом направлении стала статья Евгения Лифшица, опубликованная в 1946 г. и посвященная росту возмущения плотности на протяжении космической истории. Изучение крупномасштабной структуры активно развивалось в нашей стране, в частности в научной школе Якова Зельдовича. С появлением компьютеров основные результаты по эволюции крупномасштабной структуры получают численно. Сравнение данных расчетов с наблюдениями позволяет получать и уточнять многие параметры, важные для разных областей астрофизики.
Скопления заполнены горячим газом с температурой в десятки миллионов градусов.
Также скопления галактик важны для исследований в области фундаментальной физики: изучение динамики скоплений помогает проводить тесты различных теорий гравитации. На данный момент наилучшего согласия удается добиться в рамках общей теории относительности (с учетом темного вещества).
Рентгеновские наблюдения позволяют изучать свойства горячего газа в скоплениях галактик, что дает возможность определять параметры скоплений и исследовать их историю. Газ в формирующихся скоплениях остывает, течет в центр и образует гигантскую центральную галактику, однако затем сверхмассивная черная дыра, находящаяся в центральной массивной галактике скопления, своей активностью разогревает газ. Анализ структур в газе позволяет определить и историю активности черной дыры. Предполагается, что запуск спутника «Спектр-Рентген-Гамма» позволит обнаружить до 100 000 скоплений галактик по рентгеновскому излучению горячего газа в них (это все крупные скопления в видимой части Вселенной). Вместе с наблюдениями эффекта Сюняева – Зельдовича (рассеяния фотонов реликтового излучения на электронах горячего газа скоплений) в миллиметровом диапазоне рентгеновские данные позволят существенно продвинуться в уточнении базовых космологических параметров, в том числе касающихся свойств темной энергии.
Начиная с 1990-х гг. в арсенале астрофизиков появился очень мощный метод для изучения скоплений галактик, разработанный Энтони Тайсоном (Anthony Tyson). Наблюдая сквозь скопления существенно более далекие галактики, мы видим их искаженными, причиной искажений является искривление пространства массой скопления. Фактически это гравитационное линзирование, только эффект очень невелик, поэтому данный метод называют слабым линзированием . Обработка и анализ искаженных изображений большого числа галактик позволяет измерить распределение масс в скоплении галактик, выступающем в роли линзы, вне зависимости от того, чем определяется масса: звездами, газом или темным веществом. Исследование некоторых скоплений галактик таким способом дает самые надежные аргументы в пользу существования темного вещества.

Глава 11
Расширение Вселенной
Наряду с биологической эволюцией на Земле расширение Вселенной представляет собой один из самых грандиозных процессов, происходящих в природе. Наблюдения однозначно говорят нам, что в настоящее время расстояния между достаточно далекими галактиками увеличиваются, причем последние несколько миллиардов лет это происходит все быстрее и быстрее. Плотность вещества снижается, а температура заполняющего Вселенную излучения уменьшается, а это значит, что когда-то мир был заполнен горячим плотным веществом. Тогда не могло существовать не только звезд и галактик, не только атомов и молекул, но даже привычные нам частицы – электроны, протоны, нейтроны – не могли стабильно существовать из-за экстремально больших значений плотности и температуры.
Расширение началось почти 14 млрд лет назад. Спустя десятки миллионов лет появились первые звезды, затем галактики, вплоть до настоящего времени формируются скопления и сверхскопления галактик. На протяжении космической истории менялся химический состав Вселенной: водорода становилось все меньше, а количество тяжелых элементов увеличивалось.
Читать дальшеИнтервал:
Закладка: