Сергей Попов - Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной
- Название:Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2018
- Город:Москва
- ISBN:978-5-9614-5048-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Попов - Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной краткое содержание
Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Максимальная энергия зарегистрированных частиц превышает 10 20эВ.
Первичные (космические) заряженные частицы практически не достигают поверхности Земли, поэтому для их прямой регистрации необходимо поднять приборы над плотными слоями атмосферы. Именно так, по итогам наблюдений с воздушного шара, Виктор Гесс (Victor Hess) и открыл в 1912 г. космические лучи, заметив, что по мере подъема поток частиц возрастает.
Космические (и баллонные) эксперименты имеют существенные ограничения по массам и размерам, зато они позволяют определять параметры частиц напрямую непосредственно в детекторе. Для измерения энергии частиц обычно используют сцинтилляторы: частица поглощается слоем вещества, а вся ее энергия переходит в оптическую вспышку, регистрируемую фотодетектором.
Частицы с энергией до 10 14эВ исследуют из космоса.
Для измерения заряда и массы лучше устанавливать постоянные магниты, как это сделано в экспериментах PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics, Нагрузка по исследованию антивещества и астрофизики легких ядер) на борту спутника «Ресурс-ДК» и AMS-02 на МКС. Заряженные частицы отклоняются магнитным полем: положительно заряженные – в одну сторону, отрицательно заряженные – в другую, кривизна трека (траектории) при этом зависит от массы частицы и величины заряда.
Измерения позволяют определить энергию, заряд и массу частицы, а также направление движения.
Для определения направления движения частиц разработано множество методов. В космических экспериментах используются детекторы, состоящие из большого количества слоев (решеток), реагирующих на пролет частицы элементов. Зная, какие элементы сработали и в каком порядке, можно восстановить траекторию движения частицы.
Частицы высоких энергий достаточно редки, и для их регистрации потребовались бы слишком большие космические аппараты. Поэтому их регистрируют иначе: рабочим телом детектора в этом случае является атмосфера Земли.
При попадании высокоэнергичного протона (или более тяжелого ядра) возникает каскад частиц, который называют широким атмосферным ливнем . Влетая в атмосферу, протон сталкивается с молекулами газов, в результате их взаимодействия в первую очередь рождаются нейтральные пионы – так называемые пи-мезоны (также рождаются К-мезоны – каоны, которые быстро распадаются на пионы). Они распадаются, давая рождение фотонам высоких энергий, которые, в свою очередь, рождают электрон-позитронные пары. Электроны и позитроны, взаимодействуя с заряженными частицами, испускают фотоны высоких энергий, кроме того, идет процесс ионизации атомов, что поставляет дополнительные электроны. В результате всех этих процессов возникает так называемый электромагнитный каскад, его фотонную составляющую можно наблюдать с помощью наземных детекторов.
Детекторами излучения могут быть как фокусирующие зеркала, так и просто фотоумножители. Кроме прямого черенковского излучения каскада существует «воздушная флуоресценция», хотя точнее было бы называть это люминесценцией. Это явление состоит в том, что частицы возбуждают молекулы азота, которые высвечивают энергию возбуждения, это излучение также регистрируется наземными установками и позволяет изучать частицы самых высоких энергий.
Наземные наблюдения сводятся к регистрации вторичных частиц и излучения.
В результате столкновения частиц высокой энергии с атмосферными частицами также рождаются заряженные пионы, которые в основном распадаются на мюоны и нейтрино, достигающие поверхности Земли. Детектирование вторичных мюонов с помощью сцинтилляционных или водных черенковских детекторов часто используется для исследования космических лучей.
Более экзотический способ, пока не получивший широкого распространения, состоит в регистрации радиоволн от широких атмосферных ливней. Это низкочастотное (десятки мегагерц) излучение возникает при распространении электромагнитного каскада (электронов и позитронов) в магнитном поле Земли. Его существование было предсказано и продемонстрировано еще в середине 1960-х гг., однако лишь в последнее время начались серьезные попытки использовать этот метод в качестве существенного дополнения более традиционных подходов (наблюдение черенковского излучения и «воздушной флуоресценции», а также регистрация вторичных мюонов).
Преимущества косвенной регистрации состоят в том, что можно регистрировать очень редкие частицы сверхвысоких энергий – до 10 21эВ. Чтобы набрать большую статистику, необходимо охватывать по возможности бóльшую площадь. В настоящее время наиболее крупным проектом является обсерватория имени Пьера Оже (Pierre Auger) в Аргентине с площадью установки около 3000 км2. В обсерватории используется гибридная система регистрации: по всей территории расположено около 1600 черенковских водных детекторов для регистрации мюонов, и всю эту площадь осматривают 24 телескопа, сгруппированные в четыре наблюдательные станции и регистрирующие черенковское излучение и атмосферную флуоресценцию.
Именно благодаря обсерватории Оже удалось получить достаточно большую статистику частиц с энергиями выше 10 19эВ, чтобы подтвердить их внегалактическое происхождение. Однако источник этих частиц до сих пор остается неясным, хотя рассматриваются возможности ускорения частиц в космических гамма-всплесках, активных ядрах галактик и в ударных волнах в скоплениях галактик.
Одной из проблем определения природы этих «космических ускорителей» является невозможность узнать точное направление на источник. Это связано не со сложностями детектирования частиц, а с особенностями их распространения. Дело в том, что заряженные частицы испытывают влияние со стороны магнитного поля, и траектории частиц с энергиями до 10 15–10 17эВ оказываются сильно запутанными уже галактическими магнитными полями (поэтому они проводят долгое время внутри нашей Галактики). При бóльших энергиях частицы лишь слабо отклоняются полем Галактики, но, распространяясь в течение миллионов или даже миллиардов лет в межгалактической среде, испытывают отклоняющее воздействие слабых межгалактических полей. В итоге зарегистрированное направление может отличаться от исходного на несколько градусов, что исключает точную локализацию.
Обсерватория Оже – крупнейшая современная установка для изучения космических лучей.
Другой проблемой изучения частиц самых высоких энергий является невозможность точного измерения энергии и определения природы частицы. Регистрация широкого атмосферного ливня не позволяет надежно определить, был ли он вызван протоном, ядром гелия, кислорода или даже железа. Определение энергии основывается на использовании компьютерных моделей, которые позволяют связать свойства детектируемых вторичных частиц или излучения с энергией материнской частицы, но точность этого не очень велика (особенно при наблюдении «воздушной флуоресценции»). Поэтому для изучения стараются одновременно использовать разные методы (оптика, регистрация мюонов, радиоволны).
Читать дальшеИнтервал:
Закладка: