Даниил Данин - Неизбежность странного мира
- Название:Неизбежность странного мира
- Автор:
- Жанр:
- Издательство:Молодая гвардия
- Год:1962
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Даниил Данин - Неизбежность странного мира краткое содержание
Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом.
Содержит иллюстрации.
Неизбежность странного мира - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Так было и с камерой Вильсона, для которой со временем найдется постамент на площади одного из университетских центров мира.
Тридцать с лишним лет назад молодой и еще неизвестный ученый догадался поместить туманную камеру в Магнитное поле. В ту пору работа с магнитными полями была страстью этого талантливейшего экспериментатора. Однажды он вел опыты с альфа-частицами — ядрами гелия. Они прокладывали в камере отчетливые прекрасные трассы — прямые белые нити тумана. Ученый подумал: магнитное поле должно эти трассы искривить — оно ведь отклоняет заряженные частицы от прямого пути. (Так, в дубенском ускорителе магнитное поле заставляет двигаться по кругу быстролетящие протоны.)
Но чем кривые пути могли быть лучше прямых? Очень просто: искривление туманных следов сулило приобретение новых сведений о частице.
Движущийся заряд противится отклоняющейся силе магнитного поля с тем большим успехом, чем больше масса заряженного тельца и чем выше его скорость. Тяжелую частицу труднее свернуть с ее прямого пути, чем легкую. Быструю — труднее, чем медленную. Это заведомо ясно. У всех ядер гелия одна и та же масса, если пренебречь малыми различиями, зависящими от их не совсем одинаковых скоростей. Значит, при скоростях, далеких от световой, когда такое пренебрежение допустимо, по кривизне туманных шлейфов альфа-частиц можно судить о быстроте их движения: у неторопливых кривизна следа будет сильнее, у более стремительных — слабее.
Ученый получил искривленные следы, и частицы сразу стали рассказывать о себе со сцены туманной камеры гораздо больше, чем прежде. Этим ученым был Петр Леонидович Капица, чье имя ныне так хорошо известно всем.
А затем в те же 20-е годы тоже молодой исследователь и тоже совсем еще неизвестный впервые предложил космическим лучам сниматься в пронизанной магнитным полем камере Вильсона. Космические частицы начали выбалтывать с туманной сцены важные новые сведения о своих свойствах. Ныне имя физика, который заставил их сделать это, тоже знакомо всем — Дмитрий Владимирович Скобельцын.
Самый простой секрет заряженных частиц — знак заряда. Плюс или минус? Под действием магнитных сил они сворачивают в одну сторону, когда заряжены положительно, и в другую, когда заряжены отрицательно. Так, на арагацких кадрах многие следы изогнуты в противоположных направлениях, хотя летели частицы вместе: сверху вниз. Значит, заряды у них были разного знака. Это очевидно.
Другие сведения не так просты. Прочитать их на вильсоновских фотографиях с такою легкостью уже нельзя. Даже о скорости частиц нельзя судить по одной только кривизне следов: у частиц ведь могут быть самые различные массы.
Вот два одинаково искривленных следа. Кто их оставил — тяжелая частица, но медленная или легкая, но быстрая? Малость массы могла быть вознаграждена громадностью скорости. Медленность движения могла быть скомпенсирована огромностью массы. Наверняка можно умозаключить лишь одно: произведение массы на скорость имело в обоих случаях одинаковую величину. «У частиц были равные импульсы , они обладали одним и тем же количеством движения », — так сказали бы физики на своем профессиональном языке.
Это второй секрет, который сразу выведало у частиц магнитное поле: величина их импульса! Но зачем ставить тут восклицательный знак?.. Физик улыбнулся бы, услышав такой вопрос. Ну что ж, это его право. А нам не стоит стесняться своей наивности. Самые простые вопросы — самые естественные для нас.
Есть давно открытый фундаментальный закон природы:, закон сохранения импульса, закон сохранения количества движения. Тот; кто стрелял из охотничьего ружья, ощущал действие этого закона на собственном плече. Перед выстрелом ружье и пуля покоились. Их скорости — и порознь и вместе — были равны нулю. Совместный импульс — тоже. После выстрела он должен был сохраниться — остаться нулем. Но как же это возможно: у пули теперь большая скорость и импульс большой? Несомненно. Но есть еще ружье-Оно тоже могло приобрести импульс, и при этом столь же большой, да только направленный в противоположную сторону. Если бы это случилось, сумма импульсов пули и ружья по-прежнему осталась бы равной нулю. Так оно и происходит — ружье отдает нам в плечо: оно «летит» назад, потому что пуля летит вперед. Но оно летит в кавычках — чтобы сравняться по импульсу с пулей, ему не. нужна большая скорость — у. него масса большая.
Распад ядра урана подобен выстрелу из ружья. Вылетает пуля — альфа-частица. Оставшееся тяжелое ядро должно отпрянуть назад. Это можно проверить. Можно в камере Вильсона наблюдать туманные следы ядер отдачи. Да, физики так их и называют — «ядра отдачи», подражая языку охотников и артиллеристов.
Теперь мы можем сполна оценить, как важно знание импульса элементарных частиц. Восклицательный знак был оправдан.
На арагацких кадрах встречаются изломанные туманные следы. Не изогнутые, а изломанные, точно летела-летела частица и вдруг круто свернула в сторону. Внимание! С ней случилось в полете что-то очень серьезное. Можно заметить, что в точке излома изменился сам след — стал он тоньше, слабее или наоборот. В этой точке прежняя частица, вероятно, исчезла, а возникла и отлетела в сторону новая.
Распад частицы на лету? Что ж, в микромире это событие заурядное. Однако новая частица полетела от точки распада под углом, доказывая воочию, что скорость у нее иная, чем у первой, по крайней мере по направлению. Значит, и импульс другой — у импульса всегда направление скорости. Но как же закон сохранения? Надо понять происшедшее.
Сам закон указывает физикам выход из затруднения. Для баланса кто-то еще в точке распада должен был унаследовать часть импульса первой частицы. Очевидно, в месте излома родилась не одна частица, а по меньшей мере пара новых микрокентавров, и второй из них тоже отлетел под углом, но в другом направлении.
Однако если частица распалась на две, то почему же след от точки распада идет только один? Где же второй? Этот естественный вопрос кажется роковым. Но стоит только задать его по-другому, и ответ найдется немедленно. Надо спросить: почему не виден второй след? Да потому, что за второй из родившихся частиц не потянулся лучик тумана — она не смогла создать ионов на своем пути, она оказалась нейтральной .
Иначе и быть не могло. Распавшаяся частица должна была завещать своим наследницам не только импульс, но и заряд. А раз уж одна наследница сумела прочертить туманный след, то на долю второй заряда не осталось.
Это маленький пример могущественного союза опыта и теории. Даже отсутствие следа в туманной камере полно значения! Там, где мы не видим решительно ничего, физик видит мысленным взором улетающую частицу. У физиков есть забавы, соль которых понятна только им одним. Рассказывают, что однажды в 1960 году на теоретическом семинаре в Копенгагене у Нильса Бора известный теоретик Ганс Бёте в шутку продемонстрировал совершенно черный снимок — без единого туманного следа! — и сказал: «Ясно, что здесь летела нейтральная частица, которая распалась затем на две новые нейтральные… Экспериментаторам тут, конечно, нечего сказать, но мы, теоретики, должны подумать над этим замечательным снимком…» Все засмеялись хотя, наверное, все вспомнили, что ведь нечто похожее лет тридцать назад и впрямь случилось в истории открытия «первооснов».
Читать дальшеИнтервал:
Закладка: