Даниил Данин - Неизбежность странного мира
- Название:Неизбежность странного мира
- Автор:
- Жанр:
- Издательство:Молодая гвардия
- Год:1962
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Даниил Данин - Неизбежность странного мира краткое содержание
Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом.
Содержит иллюстрации.
Неизбежность странного мира - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Можно было, конечно, соблазниться наивной, так хорошо нам знакомой механической картинкой: маленький твердый шарик ударяется о большой и отскакивает назад. Математически можно было даже попытаться именно так описать рассеяние легких альфа-частиц тяжелыми атомами золота. Но физически уже было ясно, что никаких твердых шариков нет: атомы — сложные миры, а не «кругленькие штучки», накатанные из материи, как из теста.
Образ кометы не покидал Резерфорда. «Что, если возвращающаяся альфа-частица не просто пролетает вблизи от атома, а вторгается в атомное пространство, как комета вторгается в пространство солнечной системы?» — подумал он. Комета ведь, как правило, не «чувствует» в своем полете влияния сравнительно маленьких планет. Ее путь определяется притяжением только массивной сердцевины солнечной системы — самого Солнца.
Наверное, и нейтральный атом неоднороден. Уж не устроен ли он так, что положительные и отрицательные заряды в нем не перемешаны равномерно, а разделены большими расстояниями? Почему бы не допустить, что заряды одного знака сосредоточены в одном месте и образуют притягивающее атомное Солнце, а заряды другого знака, как атомные планеты, движутся где-то вдали? Тогда для вторгшейся в атомное пространство альфа-частицы атом действительно уже не будет нейтрален. Частица будет реально «чувствовать» заряд сердцевины атома, как комета «чувствует» массу Солнца.
Судя по рассказу профессора Ива, близко знавшего Резерфорда, именно образ кометы помог родиться образу атомного ядра. Об этом почему-то обычно не вспоминают. А напрасно: тут с прозрачной ясностью видно, как в рождении: новых научных идей участвуют вместе и строгая логика и поэтическое воображение. Они не враждуют, а помогают друг другу.
Не только чудо возвращения пули от мишени к ружью, но и вся картина рассеяния альфа-частиц золотым листком наводила на мысль о существовании в глубинах атома массивного заряженного ядра! Однако надо было еще решить, какого знака заряды сосредоточены в сердцевине атомного пространства? В мае одиннадцатого года весь ученый мир уже знал из статьи в «Философском журнале», что ядро положительно, а отрицательные электроны вращаются по периферии атома. Но еще в феврале Резерфорд думал, — и писал об этом в письмах, — что ядро заряжено отрицательным электричеством.
Этого тоже почему-то обычно не вспоминают. И тоже напрасно: тут с такой же прозрачной ясностью видно, как наглядный образ, увлекая ученого своей простотой, может из верного проводника вдруг превратиться в предателя. Это ведь сравнение положительно заряженной альфа-частицы с кометой требовало, чтобы ядро ее притягивало. Притягивало, а не отталкивало! Потому-то воображению и рисовалось отрицательное ядро.
Сравнение неизвестного с известным превысило свои права. Образ кометы, огибающей Солнце, завел в тупик. В самом деле, электроны, снующие всюду, убедительно доказывали, что они участвуют в строении атомов и что атомы легче всего расстаются именно с ними, как осыпающиеся колосья со своими зернами. Но тогда, значит, эти-то отрицательно заряженные частички и движутся по окраинам атомной «солнечной системы». А если еще и сердцевина атомов отрицательна, то получается чепуха. Нет, заряд ядра должен был иметь знак плюс! Но тогда тотчас рушился образ притягивающейся кометы.
Это не огорчило Резерфорда: он понял, что альфа-частица может возвращаться назад и не обогнув встречного ядра, а напротив — она может, не дойдя до него, из-за сил отталкивания повернуть обратно. Расчет показал, что это столь же правдоподобно, как и кометное притяжение. Однако Резерфорд не успокоился, пока не соорудил на лабораторном столе большую модель отталкивания положительной альфа-частицы положительным атомным ядром.
Он укрепил на столе большой магнит северным полюсом вверх, а над ним повесил на длинном плетеном шнуре маленький магнит северным полюсом вниз. Когда этот магнитный маятник раскачивался, большой магнит отталкивал его назад совершенно так, как это «нужно было» Резерфорду.
В темной комнате Манчестерской лаборатории, где было открыто атомное ядро, побывало в одиннадцатом году немало ученых из разных стран. Один из них — крупнейший японский физик Нагаока — написал Резерфорду из Токио: «Мне кажется гением тот, кто может работать с такой простой установкой и собирать при этом богатый урожай, далеко превосходящий то, что получают другие с помощью самых чувствительных и сложных устройств». [9] Это похоже на известные слова Гельмгольца о Фарадее: «Он показал мне все, что нужно было видеть. Но это было немного, ибо старые куски проволоки, дерева и железа кажутся ему достаточными для того, чтобы прийти к величайшим открытиям».
Так родился планетарный атом.
И все-таки, хотя в Манчестерской лаборатории Резерфорда настроение царило прекрасное, вздоха облегчения не вырвалось ни у кого.
Отчего же? Отчего такая ясная и наглядная модель резерфордовского атома была в то же время невероятной?
Она противоречила классической физике — вот в чем дело. И это понимали в Манчестере все.
Нефизики думали, как раз наоборот: после «заумной» квантовой гипотезы Планка (1900) да еще теории относительности Эйнштейна (1905) показалось, что классическая физика взяла, наконец, реванш на атомном плацдарме. Ведь планеты движутся вокруг Солнца по законам, открытым Кеплером и Ньютоном. Так отчего бы и электронам не путешествовать вокруг ядра по тем же законам? Это ли не торжество классической механики! И смотрите, как все разумно в природе: большое и малое устроено одинаково! Такое философствование было соблазнительно. И ему, конечно, предавались домашние натурфилософы нашего века.
А между тем противоречие с классикой было крайне простым. И в то же время роковым.
Наш третий искусственный спутник Земли совершал 6858-й оборот, когда писалась эта страница. Он был еще полон сил и с прежней убедительностью доказывал могущество людей, подчинивших земное тяготение своей воле. Но каждый знал, что придет час, когда кружение спутника прекратится, его энергия постепенно растратится на неизбежное торможение в атмосфере Земли, и силы земного притяжения все-таки возьмут свое.
В сущности, весь полет спутника — медленное падение на Землю: эллипс его орбиты все сужается — спутник описывает скручивающуюся спираль. Виток за витком. В центре, или, лучше, в фокусе спирали, — Земля. (Сказать «в фокусе» — лучше, потому что эта спираль, вовсе не похожа на заводную пружину часов. Ее витки — эллипсы. И эти эллипсы не только сужаются от витка к витку, но еще и вытягиваются. Кривая падения спутника оказывается очень сложной, лишь отдаленно напоминающей обычную спиральную линию, но все-таки спиралевидной. Нам тут всего важнее, что спутник, тормозясь в атмосфере, падает на Землю в строгом согласии с законами классической механики.)
Читать дальшеИнтервал:
Закладка: