Йэн Стюарт - Математика космоса [Как современная наука расшифровывает Вселенную]
- Название:Математика космоса [Как современная наука расшифровывает Вселенную]
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2018
- Город:Москва
- ISBN:978-5-9614-5228-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Йэн Стюарт - Математика космоса [Как современная наука расшифровывает Вселенную] краткое содержание
«Математика космоса» — это волнующий и захватывающий математический квест на деталях внутреннего мира астрономии и космологии.
Издание подготовлено в партнерстве с Фондом некоммерческих инициатив «Траектория».
Математика космоса [Как современная наука расшифровывает Вселенную] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Однако реальное полупрозрачное зеркало — это громадная квантовая система, состоящая из атомов серебра, разбросанных по стеклянному листу. Когда фотон попадает на такое зеркало, он либо отскакивает от элементарной частицы в составе атома серебра, либо проникает глубже. Отскочить он может в любом направлении, под любым углом. Слой атомов серебра тонок, но толще, чем в один атом, так что фотон может столкнуться с атомом серебра глубже, не говоря уже об очень путаной атомной структуре стекла. Чудесным образом после всех взаимодействий фотон либо отражается, либо проходит насквозь неизмененным. (Есть и другие возможности, но встречаются они так редко, что мы можем не обращать на них внимания.) Так что реальность отличается от гипотетической ситуации с бильярдным шаром. Скорее можно представить себе, что автомобиль-фотон въезжает в город с севера и взаимодействует по пути с тысячами других машин, после чего чудесным образом выезжает из города либо на юг, либо на восток, выбирая направление случайно. В чистой идеальной модели эта сложная система взаимодействий игнорируется, и остается только нечеткий фотон и четкое, хотя и случайно отражающее, зеркало.
Да, я знаю, что это модель, и она, судя по всему, работает. Но нельзя вводить подобную идеализацию и при этом утверждать, что используется только уравнение Шрёдингера.
В последнее время физики рассматривают квантовые наблюдения с по-настоящему квантово-механической точки зрения, вместо того чтобы постулировать нереалистичные ограничения классического типа. То, что они обнаружили, представляет все дело в куда более разумном свете.
Во-первых, нельзя не признать, что суперпозиции состояний, как в ситуации с котом, создаются в лабораториях для все более крупных квантовых систем. Среди примеров, более или менее по возрастанию, можно назвать протон, ион бериллия, молекулу бакминстер-фуллерена (60 атомов углерода, организованные в кристаллическую решетку в форме усеченного икосаэдра), и электрический ток (в котором задействованы миллиарды электронов) в сверхпроводящем устройстве квантовой интерференции SQUID. Пьезоэлектрический камертон, состоящий из триллионов атомов, удалось поместить в суперпозицию вибрирующего и невибрирующего состояний. Это еще не коты, но достижения замечательные и контринтуитивные. Подбираясь к живым существам, Ориол Ромеро-Исарт с коллегами предложили в 2009 году создать Шрёдингеров вирус гриппа. Поместите вирус в вакуум, охладите до квантового состояния с минимальной энергией, а затем воздействуйте на него лазером. Вирус гриппа достаточно жизнестоек, чтобы выдержать такое обращение, а в результате он, по идее, должен оказаться в суперпозиции исходного состояния и возбужденного, то есть более высокоэнергетического, состояния.
Этот эксперимент пока не проведен, но даже если кому-то удастся реализовать его, вирус — это не кот. Квантовые состояния крупномасштабных объектов отличаются от квантовых состояний мелкомасштабных объектов, таких как электроны и SQUID, поскольку суперпозиции состояний крупных систем намного более хрупки. Можно поместить электрон в комбинацию состояний с вращением по часовой стрелке и против и держать его там почти неограниченное время, изолировав от окружающего мира. Если попробовать проделать то же с котом, суперпозиция декогерирует: ее тонкая математическая структура быстро распадется. Чем сложнее система, тем быстрее она декогерирует. Суть в том, что даже в квантовой модели кот ведет себя как классический объект, если только вы не смотрите на него невообразимо короткое время. Участь Шрёдингерова кота не более загадочна, чем рождественский подарок от тети Веры: развернешь — узнаешь. Да, конечно, она всегда присылает либо носки, либо шарф, но это не значит, что на этот раз ее подарок представляет собой суперпозицию того и другого.
Препарирование квантовой волновой функции Вселенной в суперпозицию человеческих историй — Гитлер победил или не победил — это полная чепуха. Квантовые состояния не рассказывают человеческих историй. Если бы можно было взглянуть на квантовую волновую функцию Вселенной, то мы не нашли бы в ней никакого Гитлера. Даже частицы, из которых он состоял, все время менялись бы по мере того, как у него выпадали бы волосы, а на пиджак садилась пыль. Точно так же по волновой функции кота невозможно сказать, жив он, мертв или только что превратился в кактус.
Даже в рамках квантовой механики существует математическая проблема, связанная с обычным подходом к парадоксу кота Шрёдингера. В 2014 году Джейков Фоукзон, Александр Потапов и Станислав Подосенов разработали новый дополняющий подход. Их расчеты показывают, что даже если кот действительно находится в состоянии суперпозиции, то его состояние, которое вы увидите, открыв ящик, имеет «определенные и предсказуемые результаты измерений». Исследователи делают вывод: «Вопреки [иным] мнениям, „взгляд“ на результат ничего не меняет, он лишь информирует наблюдателя о том, что уже произошло». Иными словами, кот определенно либо жив, либо мертв еще до того, как кто-либо откроет ящик, но внешний наблюдатель на этом этапе не знает, в каком именно состоянии тот находится.
В основу их расчета положено тонкое различие. Обычное представление суперпозиции состояний кота выглядит так:
|кот〉 = |жив〉 + |мертв〉.
Здесь символы | 〉 — это обозначение, при помощи которого специалисты по квантовой физике записывают конкретные состояния, поэтому читать это можно как «состояние такое-то». Я опустил кое-какие константы (амплитуды вероятностей), на которые эти состояния домножаются.
Однако такая формулировка плохо сочетается с развитием квантовых состояний во времени. Модель Гирарди — Римини — Вебера — математическая методика анализа коллапса волновой функции — требует введения времени в явном виде. Причинность запрещает совмещение состояний, имеющих место в разное время, поэтому мы должны записать состояние как
|кот в момент t 〉 = |живой кот в момент t и нераспавшийся атом в момент t 〉 + |мертвый кот в момент t и распавшийся атом в момент t 〉.
Это запутанное состояние, как говорят специалисты. Оно не является суперпозицией «чистых» состояний, таких как «живой кот» или «нераспавшийся атом». Нет, это суперпозиция смешанных состояний, состояния кота и состояния атома, представляющих сколлапсировавшее состояние спаренной системы кот/атом. Оно сообщает нам, что еще до того, как мы открыли ящик, либо атом уже распался и (совершенно предсказуемо) убил кота, либо не произошло ни того ни другого. В этом нет ничего парадоксального, и именно этого мы ожидали бы от классической модели наблюдаемого процесса.
Читать дальшеИнтервал:
Закладка: