Йэн Стюарт - Математика космоса [Как современная наука расшифровывает Вселенную]
- Название:Математика космоса [Как современная наука расшифровывает Вселенную]
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2018
- Город:Москва
- ISBN:978-5-9614-5228-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Йэн Стюарт - Математика космоса [Как современная наука расшифровывает Вселенную] краткое содержание
«Математика космоса» — это волнующий и захватывающий математический квест на деталях внутреннего мира астрономии и космологии.
Издание подготовлено в партнерстве с Фондом некоммерческих инициатив «Траектория».
Математика космоса [Как современная наука расшифровывает Вселенную] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В 2015 году Игорь Пиковский, Магдалена Зых, Фабио Коста и Часлав Брукнер ввели в обсуждение проблемы новый фактор — выяснили, что гравитация вызывает еще более быструю декогеренцию суперпозиций. Причина — релятивистское замедление времени — эффект, который заставляет время остановиться на горизонте событий черной дыры. Даже крохотное замедление времени, вызванное слабым гравитационным полем, вмешивается в существование квантовых суперпозиций. Так что гравитация почти мгновенно декогерирует шрёдингерова кота до состояния либо «жив», либо «мертв». Разве что вы постулируете, что ящик непроницаем для гравитации, что само по себе сложно, поскольку подобных материалов не существует.
Вероятно, точек зрения на кота Шрёдингера и тесно связанную с ним многомировую интерпретацию квантовой механики на свете существует больше, чем квантовых физиков. Я рассказал всего лишь о нескольких попытках разрешить этот парадокс, но даже они указывают на то, что квантовую мультивселенную ни в коем случае нельзя считать делом решенным. Так что пусть вас не тревожит возможность того, что где-то существует другая вселенная, параллельная этой, и что там ваш двойник живет в мире, где победил Гитлер. Не исключено, что такое возможно , но квантовая механика не дает убедительных причин считать, что это действительно так.
Но для фотона это действительно правда. И это само по себе замечательно.
К настоящему моменту вы, вероятно, поняли, что я скептически настроен по отношению к мультивселенной. Мне очень нравится связанная с ними математика, и в качестве основы для научно-фантастического сюжета эта гипотеза тоже замечательно подходит, но в ней слишком много ничем не подтвержденных допущений. Среди различных вариантов мультивселенной, о которых я говорил, выделяется, пожалуй, ландшафтная вселенная, в пользу которой все же имеются некоторые данные. Дело не в том, что у нас есть доказательства ее существования — что бы это ни значило, — но она все же разрешает, кажется, мучительный вопрос исключительно маловероятной тонкой настройки фундаментальных констант.
Что подводит меня наконец к варианту номер четыре.
Ландшафтная мультивселенная — это философское излишество. Эта гипотеза пытается разрешить единственный вопрос, который в настоящее время ставит в тупик несколько незначительных в космическом масштабе человеческих существ тем, что постулирует существование необычайно обширного и сложного объекта, совершенно превосходящего любой человеческий опыт. Это как геоцентрическая космология, в которой вся остальная огромная Вселенная оборачивается каждые сутки вокруг неподвижной Земли, расположенной в центре мироздания. Физик Пол Стейнхардт, работавший над инфляционной гипотезой при ее зарождении, говорил то же самое об инфляционной мультивселенной: «Чтобы объяснить одну простую вселенную, которую мы видим, гипотеза инфляционной вселенной постулирует бесконечное множество вселенных произвольной сложности, которые мы видеть не можем».
Было бы проще признать, что мы не знаем, откуда взялась тонкая настройка. Но вполне возможно, нам даже нет нужды заходить так далеко, потому что существует еще одна возможность. А именно, что проблема тонкой настройки сильно преувеличена и что на самом деле ее попросту не существует. Это и есть четвертый вариант. Если это так, то все мультивселенные лишь поверхностная пена.
Эти рассуждения основаны на более тщательном анализе предполагаемых свидетельств в пользу тонкой настройки и упомянутой вероятности получения комбинации фундаментальных констант, пригодной для жизни и равной 10↑ –47. Расчет этот требует несколько достаточно сильных допущений. Одно из них состоит в том, что единственный способ построить вселенную — выбрать 26 констант, которые следует вставить в наши текущие уравнения. Да, действительно, математически эти константы работают как численные «параметры», которые модифицируют уравнения, не меняя при этом их общей математической формы; насколько мы можем судить, каждая модификация дает жизнеспособный набор уравнений, определяющих некую вселенную. Но на самом деле нам это неизвестно. Мы не имели возможности наблюдать хотя бы одну модифицированную вселенную.
Меня как математика беспокоит существование большого количества и других параметров (а их немало), которые неявно присутствуют в уравнениях, но никогда не записываются, поскольку в нашей Вселенной, так уж получилось, они равны нулю. Почему эти параметры не могут варьироваться тоже? Иными словами, как насчет того, чтобы вставить в уравнения дополнительные слагаемые, помимо тех, что мы записываем в них сейчас? Каждое дополнительное слагаемое такого рода предполагает дополнительную тонкую настройку, которая тоже нуждается в объяснении. Почему состояние Вселенной не зависит от суммарного числа сосисок, проданных на Смитфилдском рынке в Лондоне в 1997 году? Или от третьей производной поля кармабхуми, неизвестного пока науке?
О Господи, еще две константы, значения которых должны быть очень-очень близкими к тем, что наблюдаются в этой Вселенной.
Считать, что единственный способ строить альтернативные вселенные состоит в том, чтобы менять известные фундаментальные константы в модных на данный момент модельных уравнениях, — согласитесь, такой подход говорит о полном отсутствии воображения. Это как если бы обитатели какого-то острова в южных морях в XVI веке считали, что единственный способ развивать земледелие состоит в том, чтобы выращивать кокосовые орехи получше.
Однако давайте примем слова поборников тонкой настройки на веру и согласимся с этим конкретным допущением. Действительно ли, что тогда вероятность 10↑ –47вступает в игру и требует объяснения? Чтобы ответить на этот вопрос, нам нужно знать о расчете немного больше. В самом общем плане метод состоит в том, чтобы зафиксировать все фундаментальные константы, кроме одной, и выяснить, что происходит при изменении именно этой константы. Для этого вы берете какой-то существенный объект реального мира, к примеру, атом, и смотрите, как повлияет на стандартное описание атома новая величина интересующей нас константы. И — кто бы мог подумать! — обычная математика атомов разваливается, за исключением разве что тех случаев, когда изменение константы было совсем крохотным.
Теперь проделаем то же самое для какой-нибудь другой фундаментальной константы. Эта константа, возможно, имеет отношение к звездам. Зафиксируем все остальные константы на их нынешних значениях, а эту одну изменим. На этот раз мы обнаружим, что традиционные модели звезд перестают работать, разве что изменение этой константы будет очень-очень маленьким. Соединив все подобные эксперименты, увидим, что изменение любой константы, превышающее какую-то очень маленькую величину, портит какой-то аспект математики Вселенной. Вывод: единственный способ получить вселенную с такими же основными свойствами, как у этой, состоит в том, чтобы использовать почти точно те же константы, что действуют здесь. Остается только посчитать вероятность сохранения всех констант до единой и получить требуемые 10↑ –47.
Читать дальшеИнтервал:
Закладка: