Йэн Стюарт - Математика космоса [Как современная наука расшифровывает Вселенную]

Тут можно читать онлайн Йэн Стюарт - Математика космоса [Как современная наука расшифровывает Вселенную] - бесплатно ознакомительный отрывок. Жанр: sci-phys, издательство Альпина нон-фикшн, год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика космоса [Как современная наука расшифровывает Вселенную]
  • Автор:
  • Жанр:
  • Издательство:
    Альпина нон-фикшн
  • Год:
    2018
  • Город:
    Москва
  • ISBN:
    978-5-9614-5228-0
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Йэн Стюарт - Математика космоса [Как современная наука расшифровывает Вселенную] краткое содержание

Математика космоса [Как современная наука расшифровывает Вселенную] - описание и краткое содержание, автор Йэн Стюарт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Как математические модели объясняют космос? Иэн Стюарт, лауреат нескольких премий за популяризацию науки, представляет захватывающее руководство по механике космоса в пределах от нашей Солнечной системы и до всей Вселенной. Он описывает архитектуру пространства и времени, темную материю и темную энергию, рассказывает, как сформировались галактики и почему взрываются звезды, как все началось и чем все это может закончиться. Он обсуждает параллельные вселенные, проблему тонкой настройки космоса, которая позволяет жить в нем, какие формы может принимать внеземная жизнь и с какой вероятностью наша земная может быть сметена ударом астероида.
«Математика космоса» — это волнующий и захватывающий математический квест на деталях внутреннего мира астрономии и космологии.
Издание подготовлено в партнерстве с Фондом некоммерческих инициатив «Траектория».

Математика космоса [Как современная наука расшифровывает Вселенную] - читать онлайн бесплатно ознакомительный отрывок

Математика космоса [Как современная наука расшифровывает Вселенную] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Йэн Стюарт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В настоящее время радиус наблюдаемой Вселенной считается близким к 45,7 миллиарда световых лет. Зная это, мы могли бы наивно вообразить, что имеем возможность заглянуть на 45,7 миллиарда лет в прошлое. Однако это не так — по двум причинам. Во-первых, когда мы говорим о «наблюдаемой Вселенной», то имеем в виду то, что можно было бы увидеть в принципе, а не то, что мы видим на практике. Во-вторых, в настоящее время считается, что возраст Вселенной составляет всего 13,8 млрд лет. Недостающие 31,9 миллиарда лет относят на счет расширения Вселенной, но к этому я еще вернусь в следующей главе.

Это чертовски большая Вселенная, к тому же речь идет только о ее наблюдаемой части. Там, дальше, может быть еще сколько угодно. К этому я тоже еще вернусь. Во всяком случае мы можем дать информированный ответ на вопрос «Насколько велика Вселенная?», если разумным образом его интерпретируем.

* * *

В противовес предыдущему на вопрос «Какой формы Вселенная?» ответить намного труднее, он вызывает много споров.

Прежде чем Эйнштейн разобрался, как включить гравитацию в его релятивистскую теорию пространства-времени, почти все были уверены, что геометрия пространства должна быть евклидовой. Одной из причин было то, что значительную часть времени между тем, когда Евклид написал свои «Начала», и тем, когда Эйнштейн осуществил радикальный пересмотр физики, евклидова геометрия считалась единственно возможной. Это убеждение было подорвано в XIX веке, когда математики открыли непротиворечивые неевклидовы геометрии, однако, несмотря на то, что внутри математики они нашли себе интересные применения, почти никто не ожидал, что они найдут себе применение и в реальном мире. Исключением из общего правила был Гаусс, который открыл неевклидову геометрию, но не стал ее обнародовать, потому что сомневался, что кто-нибудь ее примет; к тому же он всегда предпочитал избегать невежественной критики. Разумеется, геометрия на поверхности сферы не была секретом: навигаторы и астрономы использовали в своей работе хитроумную теорию сферической тригонометрии. Но в этом не было ничего особенного, поскольку сфера представляла собой всего лишь особую поверхность в обычном евклидовом пространстве. Она не была самим пространством.

Гауссу подумалось, что если геометрия не обязательно должна быть евклидовой, то и реальное окружающее нас пространство тоже не обязано быть евклидовым. Один из способов различить варианты геометрии состоит в том, чтобы сложить углы треугольника. В евклидовой геометрии вы всегда получите 180°. В одном из типов неевклидовой геометрии — в эллиптическом ее варианте — эта сумма всегда превышает 180°; в геометрии другого типа — гиперболической — она всегда меньше этой величины. Точное значение суммы при этом зависит от площади треугольника. Гаусс попытался выяснить истинную форму пространства, измерив треугольник, образованный тремя горными пиками, но не получил убедительного результата. Учитывая, что сделал с математикой Эйнштейн, опираясь на все эти открытия, можно предположить, что на его измерениях сказалось гравитационное притяжение этих гор Гаусса.

Гаусс начал размышлять о количественной оценке кривизны поверхности: можно ли измерить, насколько сильно она изгибается. До того момента поверхность традиционно рассматривалась как граница объемного объекта в евклидовом пространстве. Все не так, сказал Гаусс. Объемный объект не нужен: поверхность может существовать сама по себе. В окружающем евклидовом пространстве, кстати говоря, тоже нет необходимости. Нужно лишь нечто, что определяло бы поверхность, и на его взгляд это нечто — правило для определения расстояния, метрика . Математически метрика — это формула расстояния между любыми двумя точками, очень близкими одна к другой. Зная метрику, можно определить расстояние между любыми двумя точками. Для этого нужно протянуть между ними цепочку из очень близких соседей, определить при помощи формулы, насколько они близки друг другу, сложить все эти маленькие расстояния, а затем выбрать такую цепочку соседей, при которой результат получится минимально возможным. Эта цепочка образует так называемую геодезическую кривую, которая представляет собой кратчайшее расстояние между этими двумя точками. Эта идея привела Гаусса к элегантной, хотя и сложной, формуле для кривизны. Интересно, но в этой формуле никак не задействуется окружающее пространство. Она имеет дело только с поверхностью. Кривизна евклидова пространства равна нулю: оно плоское.

Это натолкнуло на радикальную идею: пространство может быть изогнутым и при этом не загибаться вокруг чего-то. К примеру, сфера, что очевидно, изогнута вокруг объемного шара, поверхностью которого является. Чтобы получить цилиндр, вы берете лист бумаги и сворачиваете по кругу, так что цилиндрическая поверхность изогнута вокруг объемного цилиндра, который она ограничивает. Но Гаусс отказался от такого устаревшего мышления. Он понял, что можно наблюдать кривизну поверхности, не погружая ее в евклидово пространство.

Ему нравилось объяснять это на примере муравья, живущего на поверхности и не способного покинуть ее ни для того, чтобы проникнуть внутрь, ни для того, чтобы подняться в пространство. Все, что знает муравей, — это поверхность. Даже свет заперт на поверхности, он движется вдоль геодезических кривых, — и муравей не видит, что его аналог пространства — его мир — изогнут. Однако он может догадаться о его кривизне, если проведет триангуляционную съемку. Крохотные треугольнички расскажут ему о метрике его Вселенной, а затем он сможет применить формулу Гаусса. Поползав немного по своей поверхности и поизмеряв расстояния, он сможет заключить, что его вселенная искривлена.

Такое представление о кривизне отличается в некоторых отношениях от обычного представления о ней. К примеру, скатанная в трубку газета не искривлена, хотя и выглядит как цилиндр. Чтобы понять почему, взгляните на буквы в заголовке. Мы видим, что они искривлены, но, если говорить о них по отношению к бумаге, их форма остается неизменной. Ничто не растягивается, ничто не сдвигается. Муравей не заметил бы никаких отличий на небольших участках газеты. Если говорить о метрике, газета по-прежнему плоская . На небольших участках она обладает той же геометрией, что характерна для плоскости. Так, углы небольшого треугольника дадут в сумме 180°, если вы измерите их в пределах бумаги. Идеальным инструментом для этого может послужить несжимаемый гибкий транспортир.

Плоская метрика имеет смысл — если, конечно, к ней привыкнуть, — потому что именно благодаря ей вы можете скатать газету в цилиндр. Все расстояния и углы, измеренные в пределах бумаги, останутся прежними. Обитающий на газете муравей не в состоянии локально отличить скатанную в цилиндр газету от плоского листа.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Йэн Стюарт читать все книги автора по порядку

Йэн Стюарт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика космоса [Как современная наука расшифровывает Вселенную] отзывы


Отзывы читателей о книге Математика космоса [Как современная наука расшифровывает Вселенную], автор: Йэн Стюарт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x