Йэн Стюарт - Математика космоса [Как современная наука расшифровывает Вселенную]

Тут можно читать онлайн Йэн Стюарт - Математика космоса [Как современная наука расшифровывает Вселенную] - бесплатно ознакомительный отрывок. Жанр: sci-phys, издательство Альпина нон-фикшн, год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика космоса [Как современная наука расшифровывает Вселенную]
  • Автор:
  • Жанр:
  • Издательство:
    Альпина нон-фикшн
  • Год:
    2018
  • Город:
    Москва
  • ISBN:
    978-5-9614-5228-0
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Йэн Стюарт - Математика космоса [Как современная наука расшифровывает Вселенную] краткое содержание

Математика космоса [Как современная наука расшифровывает Вселенную] - описание и краткое содержание, автор Йэн Стюарт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Как математические модели объясняют космос? Иэн Стюарт, лауреат нескольких премий за популяризацию науки, представляет захватывающее руководство по механике космоса в пределах от нашей Солнечной системы и до всей Вселенной. Он описывает архитектуру пространства и времени, темную материю и темную энергию, рассказывает, как сформировались галактики и почему взрываются звезды, как все началось и чем все это может закончиться. Он обсуждает параллельные вселенные, проблему тонкой настройки космоса, которая позволяет жить в нем, какие формы может принимать внеземная жизнь и с какой вероятностью наша земная может быть сметена ударом астероида.
«Математика космоса» — это волнующий и захватывающий математический квест на деталях внутреннего мира астрономии и космологии.
Издание подготовлено в партнерстве с Фондом некоммерческих инициатив «Траектория».

Математика космоса [Как современная наука расшифровывает Вселенную] - читать онлайн бесплатно ознакомительный отрывок

Математика космоса [Как современная наука расшифровывает Вселенную] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Йэн Стюарт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Другое дело — глобальная, или общая, форма. У цилиндра не такие геодезические линии, как у плоскости. Все геодезические линии плоскости представляют собой прямые, которые уходят в бесконечность и никогда не замыкаются. На цилиндре некоторые геодезические линии могут быть замкнутыми, они обходят цилиндр вокруг и возвращаются в ту же начальную точку. Представьте себе резинку, которой можно обхватить свернутую в рулон газету. Эта резиновая полоска образует замкнутую геодезическую кривую. Такого рода глобальная разница в форме относится к общей топологии — к тому, как кусочки поверхности складываются вместе. А метрика говорит нам только о кусочках.

Древние цивилизации находились, по существу, в положении того муравья. Люди тогда не могли подняться в воздух на воздушном шаре или аэроплане, чтобы увидеть сверху форму Земли. Но они могли провести измерения и попробовать вывести из них размеры и топологию. У них, в отличие от муравья, были и кое-какие внешние помощники: Солнце, Луна и звезды. Но когда речь заходит о форме всей Вселенной, мы оказываемся в точности в положении муравья. Чтобы определить форму Вселенной изнутри, нам приходится использовать аналогии с геометрическими упражнениями муравья.

С точки зрения муравья, поверхность имеет два измерения. Это значит, что для составления карты любого участка местности достаточно двух координат. Если не брать во внимание небольшие изменения высоты, земным навигаторам достаточно только широты и долготы, чтобы узнать, где они находятся на земной поверхности. У Гаусса был блестящий ученик по имени Бернхард Риман, и он — с подачи наставника — решил обобщить формулу Гаусса для кривизны на «поверхности» с произвольным числом измерений. Поскольку на самом деле это уже не поверхности, для их обозначения Риману потребовался новый термин, и он выбрал немецкое слово Mannigfaltigkeit , что переводится как «многообразие» в смысле множества координат.

Другие математики, среди них несколько итальянцев, заразились многомерными поверхностями и создали новую область математики: дифференциальную геометрию. Именно им принадлежит большая часть базовых идей о многомерных поверхностях. Но все эти идеи они рассматривали с чисто математической точки зрения. Никто не подозревал, что дифференциальная геометрия может быть применима к реальному пространству.

* * *

Вдохновленный своим успехом с общей теорией относительности, Эйнштейн обратил внимание на главный ингредиент, которого по-прежнему недоставало, — гравитацию. Он работал над этой проблемой несколько лет, прежде чем до него дошло, что ключ к ней лежит в геометрии Римана. Он приложил немало усилий, чтобы разобраться в этой области математики (в этом ему помог Марсель Гроссман, математик и друг, ставший также проводником и наставником).

Эйнштейн понял, что ему нужен неортодоксальный вариант Римановой геометрии. Теория относительности допускает некоторое смешение пространства и времени, несмотря на то что эти две концепции играют разные роли. В традиционном Римановом многообразии метрика определяется с использованием квадратного корня из выражения, которое принимает только положительные значения. Как в теореме Пифагора, формула метрики представляет собой (обобщенно и локально) сумму квадратов. В специальной теории относительности, в аналогичной формуле задействовано вычитание квадрата времени. Эйнштейн вынужден был допустить отрицательные слагаемые в метрике; в результате получилось то, что мы сегодня называем псевдоримановым многообразием. Конечным результатом героических усилий Эйнштейна стали уравнения поля, связывающие кривизну пространства-времени с распределением вещества. Вещество искривляет пространство-время; искривленное пространство изменяет геометрию геодезических кривых, по которым движется вещество.

Закон всемирного тяготения Ньютона не описывает движение тел непосредственно. Это уравнение, решения которого позволяют получить это описание. Аналогично уравнения Эйнштейна не описывают форму Вселенной непосредственно. Их для этого необходимо решить. Но это нелинейные уравнения с десятью переменными, так что сделать это непросто.

Римановы многообразия мы в какой-то степени способны понять интуитивно, но псевдоримановы многообразия — это настоящая головоломка, если не работаешь с ними регулярно. Одно полезное упрощение позволяет мне говорить без потери смысла о форме пространства — то есть о Римановом многообразии, а не о более скользкой концепции формы пространства-времени , которая выражается псевдоримановым многообразием.

В теории относительности нет осмысленной концепции одновременности. Разные наблюдатели могут наблюдать, как одни и те же события происходят в разном порядке. Я вижу, как кошка прыгает с подоконника за мгновение до того, как ваза с грохотом разбивается об пол; вы видите, что ваза падает раньше, чем прыгает кошка. Что произошло? Кошка разбила вазу или падающая ваза напугала кошку? (Мы все знаем, какой из этих вариантов более вероятен, но у кошки великолепный адвокат, и зовут его Альберт Эйнштейн.)

Однако, несмотря на то что абсолютная одновременность невозможна, для нее существует замена: сопутствующая система отсчета. Это хитрое название для системы отсчета, или координатной системы, представляющей Вселенную так, как она выглядит с точки зрения какого-то конкретного наблюдателя. Начните в той точке, где я нахожусь сейчас (это будет начало координат) и двигайтесь десять лет со скоростью света к близлежащей звезде. Определите систему отсчета так, чтобы эта звезда находилась в десяти световых годах от начала координат и на десять лет в будущее. Проделайте то же самое для всех направлений и времен: это будет моя сопутствующая система отсчета. Такая система есть у каждого из нас; просто может так получиться, что ваша система окажется несовместима с моей, если кто-то из нас начнет двигаться туда-сюда.

Если ваше положение в моей сопутствующей системе отсчета выглядит стационарным (то есть, попросту говоря, вы в ней не движетесь), то мы с вами — сопутствующие наблюдатели. Для нас пространственная форма Вселенной определяется одной и той же фиксированной пространственной системой координат. Ее форма и размер могут меняться со временем, но существует непротиворечивый способ описывать эти изменения. Физически сопутствующую систему можно отличить от других систем: Вселенная в ней должна выглядеть одинаково во всех направлениях. В системе, которая не является сопутствующей, на одних участках неба может наблюдаться систематическое красное смещение, а на других — синее. Вот почему я могу обоснованно говорить о том, что Вселенная представляет собой, скажем, расширяющуюся сферу. Всякий раз, когда я разделяю таким образом пространство и время, я говорю о сопутствующей системе отсчета.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Йэн Стюарт читать все книги автора по порядку

Йэн Стюарт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика космоса [Как современная наука расшифровывает Вселенную] отзывы


Отзывы читателей о книге Математика космоса [Как современная наука расшифровывает Вселенную], автор: Йэн Стюарт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x