Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Тут можно читать онлайн Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Центрполиграф, год 2006. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Популярная физика. От архимедова рычага до квантовой механики
  • Автор:
  • Жанр:
  • Издательство:
    Центрполиграф
  • Год:
    2006
  • Город:
    М.
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание

Популярная физика. От архимедова рычага до квантовой механики - описание и краткое содержание, автор Айзек Азимов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)

Популярная физика. От архимедова рычага до квантовой механики - читать книгу онлайн бесплатно, автор Айзек Азимов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Равнозначность массы и энергии, объявленная Эйнштейном в его работе 1905 года, стала активно использоваться физиками его времени. Открытие тремя годами позже радиоактивности (частично я буду говорить об этом в III части), казалось, показало ситуацию, в которой энергия бесконечно порождалась из ниоткуда. Когда специальная теория относительности указала путь, ученые стали искать исчезновение массы — и нашли его.

Может показаться удивительным, что никто не заметил взаимных изменений массы и энергии, пока Эйнштейн не вывел их теоретически. Причина этого кроется в самой природе эквивалентности — в точном определении того, какое количество энергии соответствует какому количеству массы.

Чтобы определить это, давайте возьмем обращенный коэффициент Фитцджеральда, равный 1/√(1 – v 2 /c 2). Это также можно записать, следуя алгебраическим преобразованиям, как (1 – v 2c 2) –½. Выражение, записанное этим образом, можно сказать, принадлежит типу (1 – b) –a. По теореме о биноме (математическое отношение, впервые разработанное самим Ньютоном) выражение (1 – b) –a может быть развернуто в бесконечную последовательность слагаемых, начинающуюся так: 1 + ab + ½(a 2+ 1)b 2+ …

Чтобы применить это к обращенному коэффициенту Фитцджеральда, примем a = ½, a b = v 2/c 2. Тогда коэффициент Фитцджеральда становится равным:

1 + v 2/2c 2+ 3v 4/8c 4+ …

Поскольку c, скорость света, принято считать имеющей постоянную величину, то второе и третье слагаемые (как и все последующие слагаемые этой бесконечной последовательности) увеличиваются по мере возрастания v. Но v достигает максимума тогда, когда скорость движущегося тела достигает скорости света (по крайней мере, большей скорости мы измерить не можем). Следовательно, различные слагаемые тогда достигают наибольшей величины, и при v = с последовательность принимает вид 1 + ½ + 3/ 8…

Уменьшение становится еще более резким на более низких скоростях, и последующие слагаемые становятся все более и более незначительными. Когда v = c/2 (150 000 километров в секунду), эта последовательность выглядит как 1 + 1/ 8+ 3/ 128… Когда v = c/4 (75 000 километров в секунду), серия выглядит как 1 + 1/ 32+ 1/ 2048…

Такого рода уменьшающийся ряд показывает, что завершающая часть последовательности (несмотря на то, что она бесконечна) приходит к конечному небольшому объему. Следовательно, мы можем устранить все члены последовательности, кроме нескольких первых, и рассматривать эти несколько первых как всю последовательность в достаточно точном приближении.

К примеру, на обычных скоростях все слагаемые последовательности, кроме первого (который всегда равняется 1), принимают такие крошечные значения, что их можно полностью игнорировать. В таком случае обращенный коэффициент Фитцджеральда можно рассматривать как равный единице с большой степенью приближения (именно поэтому изменения в массе и длине оставались до XX столетия незамеченными). Чтобы сделать его еще более точным, особенно на очень высоких скоростях, мы можем рассматривать два первых слагаемых серии. Это достаточно точно для всех реальных целей, и о третьем и дальнейших слагаемых можно уже не думать.

Тогда с достаточной точностью можно сказать, что

Теперь же давайте вернемся к отношению массы Лоренца уравнение 67 которое - фото 59

Теперь же давайте вернемся к отношению массы Лоренца (уравнение 6.7), которое утверждает, что масса тела в движении (m 1) равна его массе покоя (m 0), поделенной на коэффициент Фитцджеральда. Это то же самое, что сказать, что m 1равно m 0, умноженному на обращенный коэффициент Фитцджеральда; следовательно, используя новое выражение для этого обращения, данного в уравнении 7.1, мы можем написать отношение массы в следующем виде:

m 1= m 0(l + v 2/2c 2) = m 0+ m 0v 2/2с 2. (Уравнение 7.2)

Увеличение массы в результате движения, то есть m 1– m 0, мы назовем просто m. Решив уравнение 7.2 для m 1– m 0 , то есть для m, мы найдем, что

m = m 0v 2/2c 2 = ½m 0v 2/c 2. (Уравнение 7.3)

Выражение ½m 0v 2из правой части уравнения 7.3 оказывается значением кинетической энергии движущегося тела (кинетическая энергия равна ½mv 2, см. ч. I), которое обладает своей массой покоя. На самом же деле оно обладает чуть большей массой благодаря факту своего движения, но за исключением случаев особо высоких скоростей реальная масса его лишь немногим больше массы покоя — столь немногим, что на практике мы можем считать ½m 0v 2равным его кинетической энергии и быть уверенными в том, что это достаточно точно. Если мы обозначим эту кинетическую энергию как e, то уравнение 7.3 примет вид:

m = е/с 2. (Уравнение 7.4)

Вспомним о том, что т представляет прибавление массы, получаемое в ходе движения. Поскольку очень быстрое движение, представляющее очень большое значение e (кинетической энергии), производит лишь небольшой прирост массы, мы ясно видим, что большая часть обыденной энергии равна крошечному количеству массы. Для подсчета отношения можно использовать уравнение 7.4, простым преобразованием приводимое к привычному виду:

e = тс 2. (Уравнение 7.5)

В системе СГС (см. ч. I), где все единицы измерения воспроизводятся из сантиметров, граммов и секунд, значение c (скорости света в вакууме) — 30 000 000 000 сантиметров в секунду. Соответственно значение c 2 = 900 000 000 000 000 000 000 см 2/с 2. Если принять за m один грамм, то mc 2 равняется 900 000 000 000 000 000 000 граммов на сантиметр в квадрате в секунду в квадрате, или, поскольку 1 г на см 2/с 2определяется как «эрг», 1 грамм массы равен 900 000 000 000 000 000 000 эргов энергии.

Одна килокалория равна 41 860 000 000 эргов. Это означает, что 1 грамм массы равен 21 500 000 000 килокалорий. Сгорание галлона бензина освобождает около 32 000 килокалорий. Этому количеству энергии соответствует масса в 32000/ 21500000000, то есть 1/ 670000грамма. Это означает, что сгорание целого галлона бензина, перевод энергии в тепло, свет, механическое движение поршней и т. д. приносит системе в целом потерю массы в 1/ 670000грамма. Неудивительно, что химики и физики не замечали столь малых изменений, пока не стали искать их специально.

С другой стороны, если бы целые граммы массы можно было полностью перевести в энергию, эта обширная концентрация произведенной энергии имела бы огромное действие. В части III будут перечислены шаги, по которым постепенно стало понятным, как это сделать. В результате этого появились атомные бомбы, угрожающие уничтожить все человечество, и атомные реакторы, дающие человечеству новую надежду на будущее.

Еще уравнение 7.5 предлагает первое удовлетворительное объяснение того, откуда берут энергию Солнце и другие звезды. Для того чтобы излучать столько энергии, сколько оно излучает, Солнце должно терять 4 600 000 тонн массы ежесекундно. Это довольно много по человеческим меркам, но незначительно для Солнца. Такими темпами оно может излучать практически неизменно еще миллиарды лет.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Айзек Азимов читать все книги автора по порядку

Айзек Азимов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Популярная физика. От архимедова рычага до квантовой механики отзывы


Отзывы читателей о книге Популярная физика. От архимедова рычага до квантовой механики, автор: Айзек Азимов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x