Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики
- Название:Популярная физика. От архимедова рычага до квантовой механики
- Автор:
- Жанр:
- Издательство:Центрполиграф
- Год:2006
- Город:М.
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание
Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Этот феномен был открыт Пьером Кюри (который открыл точку Кюри, см. гл. 9) и его братом Жаком в 1880 году. Они назвали феномен пьезоэлектричество («электричество через давление»).
Ситуация также может быть и обратной. Если кристалл, способный проявлять пьезоэлектричество, поместить в электрическое поле так, чтобы разность потенциалов проходила сквозь кристалл, то он изменит свою форму соответствующим образом. Если потенциальная разница применяется и устраняется много раз подряд, то можно заставить кристалл вибрировать и производить звуковые волны. Если кристалл имеет подходящие размер и форму, то он будет производить звуковые волны такой высокой частоты, что они будут лежать в ультразвуковом диапазоне (см. ч. I). Такого рода взаимные переходы звука и электрического напряжения используются в современных проигрывателях.
Конденсаторы
В работе с электричеством порой бывает необходимо сообщить телу наибольший заряд, затратив при этом как можно меньше усилий. Предположим, у вас есть изолированная металлическая пластина, которая сохраняет любой сообщенный ей заряд. Если вы дотронетесь до такой пластины отрицательно заряженным стержнем, поток электронов хлынет в нее и зарядит пластину отрицательно.
Вы можете продолжать этот процесс до тех пор, пока сохраняется разность потенциалов между стержнем и пластиной, то есть до тех пор, пока вы можете сообщать стержню, натирая его (например, лоскутом шерсти), больший электрический заряд, чем имеется в пластине. Но в конце концов заряд пластины увеличится до такого уровня, что никакие действия уже не придадут стержню заряд больший, чем у пластины. Тогда разность потенциалов станет равной нулю, и заряд уже не будет произвольно перемещаться.
Далее, возьмем вторую металлическую пластину, заряженную положительно, и параллельно расположим ее под первой, но так, чтобы пластины не касались друг друга. Тогда электроны первой пластины под воздействием положительного заряда сгруппируются с той стороны, которая ближе ко второй пластине. (Электроны, скапливаясь с этой стороны, будут находиться ближе друг к другу, «сконденсируются», и такой прибор, состоящий из двух плоских параллельных пластин, расположенных на небольшом расстоянии друг от друга, будет называться конденсатором.)
Другая сторона первой пластины потеряет часть отрицательного заряда, и ее потенциал уменьшится. Таким образом, снова возникнет разность потенциалов между отрицательно заряженным стержнем и этой стороной. Электроны снова перейдут от стержня к пластине, и ее общий заряд станет значительно больше, чем тот, который мог возникнуть в отсутствие второй пластины.
Подобным же образом положительный заряд второй пластины может увеличиться благодаря первой отрицательно заряженной пластине. Так пластины обеспечивают друг другу большую зарядную емкость. (Подобное устройство может также называться конденсатором емкости.)
Чем больше заряд пластин, тем больше разность потенциалов между ними.
Это подобно утверждению: чем выше пик горы и чем ниже долина, тем дольше падать. Между количеством заряда и разностью потенциалов существует такая же прямая зависимость.
Представим, что между пластинами — вакуум, тогда отношение между величиной заряда и разностью потенциалов примет постоянную величину. Выразим это формулой:
где q — заряд в кулонах (Кл); v — разница потенциалов в вольтах (В); c — электрическая емкость, которая измеряется в кулонах на вольт.
Единица в один кулон на вольт получила название 1 фарад (в честь Майкла Фарадея)
Таким образом, конденсатор с электрической емкостью в один фарад накапливает заряд, равный одному кулону, на каждой из пластин: на одной — положительный заряд, на другой — отрицательный на один вольт потенциальной разницы между пластинами. Но на самом деле конденсаторы с такой большой электрической емкостью обычно не встречаются. Как правило, за единицу измерения принимают микрофарад (одна миллионная фарада) или микромикрофарад (одна миллионная миллионной фарада).
Теперь предположим, что между пластинами поместили диэлектрик (непроводник). Диэлектрик уменьшает силу притяжения между противоположными зарядами и, таким образом, сокращает количество работы, которая необходима для разделения этих зарядов. Но, как объяснялось выше, разность потенциалов есть количество работы, затраченной на разделение противоположных зарядов. Это значит, что разность потенциалов между пластинами конденсатора при наличии диэлектрика равняется отношению v/κ, где κ — диэлектрическая постоянная.
Если мы обозначим электрическую емкость конденсатора с диэлектриком как c', то тогда получим следующее:
А сопоставив уравнения 10.3 и 10.4, получим
Очевидно, что наличие диэлектрика между пластинами увеличивает электрическую емкость конденсатора прямо пропорционально его диэлектрической постоянной. Диэлектрическая постоянная воздуха равняется всего лишь 1,0006 (а за 1 принимается проницаемость вакуума), поэтому воздух между пластинами можно считать средой, равнозначной вакууму. Диэлектрическая постоянная стекла равна примерно 5, следовательно, электрическая емкость пластин, разделенных стеклом, увеличивается в пять раз. Соответственно, конденсатор, разделенный стеклом, накопит заряда в пять раз больше, чем тот, который имеет в качестве диэлектрика воздух.
Электрическую емкость можно увеличивать посредством уменьшения расстояния между пластинами, или посредством увеличения площади поверхности пластин, или применяя тот и другой способ одновременно. Если расстояние между пластинами сокращается, то уменьшается разность потенциалов (так же как и разность гравитационных потенциалов уменьшается, если объекты разделяют не два этажа, а один). Если это так, то v из уравнения 10.3 уменьшается, в то время как q остается неизменным, а с непременно возрастает. Опять же при увеличении площади поверхности пластин появляется больше места для скопления зарядов. Следовательно, q увеличивается в уравнении 10.3, а значит, и с тоже.
Конденсатор с большими пластинами может быть громоздким, но такого же результата можно добиться, объединив несколько конденсаторов между собой, соединив положительно заряженные пластины друг с другом при помощи проводникового материала, например металлического стержня, и так же поступив с отрицательно заряженными. Таким образом, любой заряд, добавленный к одной из пластин, распределится по всем пластинам того же типа, и множество маленьких пар пластин приобретут свойства одной большой пары. Таким образом сгруппированные конденсаторы называют последовательно соединенными.
Читать дальшеИнтервал:
Закладка: