Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики
- Название:Популярная физика. От архимедова рычага до квантовой механики
- Автор:
- Жанр:
- Издательство:Центрполиграф
- Год:2006
- Город:М.
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание
Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Генератор переменного тока выглядит проще, чем генератор постоянного тока, но для того, чтобы переменный ток можно было применить, следовало преодолеть некоторые трудности. Эдисон, например, был ярым сторонником постоянного тока и в последние десятилетия XIX века усиленно боролся против использования переменного тока. Большим защитником использования переменного тока был американский изобретатель Джордж Вестингауз (1846–1914).
Рассматривая своеобразное соревнование между двумя типами тока, с первого взгляда можно решить, что постоянный ток «выигрывает». Следовательно, переменный ток кажется в свете этого бесполезным. В конце концов постоянный ток в результате «куда-то попадает» и, следовательно, полезен, а переменный «никуда не попадает» и, следовательно, полезным быть не может — по крайней мере, так кажется.
Однако это представление неверно.
Это заблуждение. Оно возникает при проведении ошибочной аналогии с водой, которая течет по трубе. Мы хотим, чтобы вода полилась для какой-то определенной цели — чтобы попить, помыться, охладить что-либо, полить растения, потушить пожар и т. д.
Но в стандартные бытовые приборы электричество никогда не «вытекает» из провода. Оно никуда не уходит ни при каких обстоятельствах. Постоянный ток может течь только в одном направлении, но он движется в рамках своей цепи и никуда не «приходит», так же как если бы он двигался взад-вперед.
Бывают случаи, когда постоянный ток, безусловно, необходим. При зарядке батарей, например, ток должен идти только водном направлении — противоположном тому, в котором он движется при разрядке батарей. С другой стороны, иногда не важно — постоянный ток или переменный.
К примеру, тостер или лампа накаливания работают только потому, что сопротивление раскаляет часть цепи (докрасна в тостере и добела — в лампочке). Эффект нагревания не зависит от направления тока, даже если оно меняется туда-сюда.
Таким же образом, вам будет жарко и вы вспотеете независимо от того, пробежали ли вы милю по прямой, по круговой дорожке или взад-вперед по комнате.
Более серьезная проблема с переменным током заключалась в том, что математический анализ его поведения более сложен, чем анализ цепей с постоянным током. Для разработки правильных цепей переменного тока нужно было сначала произвести полный математический анализ. Пока этого не произошло, таким цепям все время приписывалась низкая эффективность.
Полное сопротивление, импеданс
Ситуация, когда сила тока и разность потенциалов постоянно меняются, вызывает важные вопросы — например, как произвести простейшие вычисления касательно переменного тока. Если формула включает I (силу тока) или E (разность потенциалов), то непонятно, какую величину использовать, поскольку переменный ток не имеет постоянного значения ни того ни другого, а имеет только значения, которые постоянно изменяются от нуля до какой-то максимальной величины (I maxи E max) сначала в одном направлении, потом — в другом.
Можно высчитать эти свойства переменного тока по их производительности — это проще, чем определять их абсолютные числовые значения. Можно увидеть, к примеру, что переменный ток способен иметь ту же производительность (если измерять теплоотдачу или другие факторы), что и постоянный ток с определенными значениями I и E. Соответственно величины I и E представляют собой эффективную силу тока и эффективную разность потенциалов переменного тока. Эффективные величины относятся к максимальным величинам следующим образом:
Можно предположить, что, найдя значения I и E для переменного тока, можно продолжить вычисления и сопротивления, представив его как отношение E/I (сила тока, при заданной разности потенциалов) в соответствии с законом Ома. Однако здесь начинаются сложности. Цепь, которая при постоянном токе имеет низкое сопротивление, при переменном токе будет характеризоваться гораздо большим сопротивлением, поскольку при той же разности потенциалов будет получаться более слабый ток. Очевидно, переменный ток наделяет цепь неким дополнительным фактором сопротивления, отличным от обычного сопротивления вещества, из которого изготовлена цепь.
Чтобы понять, почему это происходит, вернемся к первым экспериментам Фарадея с электромагнитной индукцией (см. гл. 12). Там электрический ток пускался по одной катушке — возникало магнитное поле, расширяющиеся силовые линии пересекали вторую катушку, индуцируя разность потенциалов, соответственно создавался электрический ток во второй катушке. Когда ток в первой катушке выключали, сокращающиеся силовые линии угасающего магнитного поля снова пересекали вторую катушку, провоцируя разность потенциалов с другим знаком, и, таким образом, появлялся ток во второй катушке, идущий в обратном направлении.
Это понятно. Но следует отметить, что, когда ток начинает идти по катушке так, что силовые магнитные линии распространяются наружу, они пересекают не только другие соседние катушки, но и каждый из витков, которые создают магнитное поле. Затем, когда ток в катушке выключается, силовые линии исчезающего магнитного поля пересекают те самые катушки, в которых только что был ток. Поскольку ток начинает и прекращает течь в катушке, индуктированный ток возникает в ней же. Это называется самоиндукцей или индуктивностью, и обнаружил ее Генри в 1832 году. (На этот раз Генри обнародовал свое изобретение, опередив Фарадея, который самостоятельно пришел к тем же выводам; Фарадей, как вы помните, таким же образом предвосхитил Генри в открытии электромагнитной индукции.)
Почти одновременно с Генри и Фарадеем индуктивность изучал и русский физик Генрих Фридрих Эмилий Ленц (1804–1865). Он сделал важное обобщение: индуктированная разность потенциалов, возникающая в цепи, всегда стремится к противодействию создавшей ее силе. Это явление носит название «закон Ленца».
Следовательно, когда при замыкании цепи возникает ток, ожидается, что сила тока немедленно возрастет до предполагаемого уровня. Однако по мере возрастания она создает индуктированную разность потенциалов, которая меняет направление тока на противоположное. Это противодействие индуктивности заставляет первоначальный ток усиливаться в цепи до ожидаемого уровня сравнительно медленно.
Размыкание цепи приводит к прерыванию течения тока, при этом логично, что сила тока сразу упадет до нуля. Вместо этого выключение тока провоцирует индуктированное напряжение, которое заставляет ток продолжать течь. Интенсивность тока падает до нуля сравнительно медленно. Эту противоположную разность потенциалов, произведенную самоиндукцией, часто называют обратным напряжением.
Читать дальшеИнтервал:
Закладка: