Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики
- Название:Популярная физика. От архимедова рычага до квантовой механики
- Автор:
- Жанр:
- Издательство:Центрполиграф
- Год:2006
- Город:М.
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание
Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Такой процесс особенно характерен для твердых веществ, где практически все атомы расположены близко друг к другу, то есть энергетические уровни твердых веществ — это уже не простые линии, а тесное скопление нескольких чуть отличных друг от друга линий. Это уже не энергетический уровень, а энергетическая зона. Электроны могут переходить из одной зоны в другую, но они не могут находиться в запрещенных энергетических зонах.
Если внешние энергетические уровни атомов твердых элементов заполнены полностью, то заполнена и энергетическая зона. В этом случае электроны не могут переходить из одного атома в другой, так как внешние энергетические уровни соседних атомов также заполнены. Такие вещества с фиксированным положением электронов в атомах не проводят электрический ток. Абсолютно не проводят ток, например, сера и кварц.
Если же внешние энергетические уровни заполнены не полностью, то энергетическая зона также заполнена не полностью, и электроны могут легко путешествовать из одного атома в другой по этим энергетическим уровням, а посредством этих свободных электронов такие вещества могут проводить электрический ток. Это свойство наиболее ярко выражено у серебра и меди.
Однако электрический ток проводят и некоторые вещества с полностью заполненной энергетической зоной. Дело в том, что над заполненной энергетической зоной существует еще одна, совершенно пустая зона, и под действием поглощаемой энергии электроны могут переходить из заполненной энергетической зоны в пустую. Здесь существует одно ограничение: ширина запрещенной энергетической зоны должна быть небольшая. Если же расстояние между энергетическими зонами велико, то вещество проводником не является.
У атомов некоторых элементов (например, кремния и германия) ширина запрещенной зоны относительно мала, что делает возможным переход электрона из одной зоны в другую. Такие элементы называются полупроводниками. С повышением температуры, то есть с увеличением количества энергии, возрастает и вероятность перехода электронов на зону выше. Таким образом, сопротивление полупроводника с повышением температуры падает (в отличие от металлов, так как в металлах с повышением температуры увеличивается частота колебаний атомов, что затрудняет переход электронов из одного атома в другой, то есть электрическое сопротивление металлов с ростом температуры повышается).
После некоторых изменений структуры этих элементов химические и физические свойства полупроводников оказались крайне полезными для человека.
Например, у германия, как и углерода, на внешней оболочке 4 электрона, каждый из которых может образовать общую электронную оболочку с одним электроном другого атома, таким образом образуются группы из четырех атомов. В этом случае все электроны закреплены на своих орбитах, поэтому германий практически не проводит ток.
Все это справедливо только в случае плотного прилегания атомов друг к другу. Но если кристалл германия неидеален, то отдельные атомы уже не могут образовывать общие электронные оболочки, и свободные электроны этих атомов способны проводить электрический ток.
Впрочем, практически все кристаллы германия содержат примеси. Если же специально добавить примесь, скажем, мышьяка, то полупроводниковые свойства германия возрастают. У атома мышьяка 5 электронов на внешней электронной оболочке, поэтому при соединении с германием только 4 из этих пяти электронов формируют общие орбиты с атомами германия, а оставшийся как раз и становится свободным электроном.
Под действием электрического тока свободные электроны внутри кристалла перемещаются от отрицательного электрода к положительному, так как электроны — отрицательно заряженные частицы. Такой полупроводник называется электронным, или полупроводником n-типа.
Теперь рассмотрим кристалл германия с примесью бора. У атома бора на внешней оболочке 3 электрона, каждый из которых формирует общие электронные оболочки с 3 атомами бора, а у четвертого на внешней электронной оболочке вместо электрона будет «дырка».
Под действием электрического тока в эту дырку попадает электрон, отталкиваемый отрицательным и притягиваемый положительным электродом. Заняв следующую дырку, электрон освобождает предыдущую, и получается, что сама дырка перемещается от положительного электрода к отрицательному, то есть движение дрейфующей дырки можно сравнить с поведением положительно заряженной частицы. Такой полупроводник называется дырочным полупроводником, или полупроводником p-типа.
Полупроводниковые устройства
Контролируя дрейф электронов внутри полупроводников, можно заменить устройствами на их основе вакуумные приборы. Так как в таких полупроводниковых устройствах вместо вакуума используются твердые вещества, их еще иногда называют твердотельными.
Представьте себе кристалл, одна часть которого имеет n -тип и подключена к «минусу» батареи, а вторая — p -тип и подключена к «плюсу». Когда цепь замкнута, электроны первой части отталкиваются от отрицательного электрода и устремляются к месту перехода между двумя половинами, а дырки второй части отталкиваются от положительного электрода и также устремляются к месту перехода. Там электроны нейтрализуют дырки и, отталкиваясь от положительного электрода, создают новые. Таким образом, все время, пока замкнута электрическая цепь, в кристалле течет ток.

А теперь представьте, что кристалл подключен к батарее наоборот: половина n -типа — к «плюсу», а p -типа — к «минусу». В этом случае электроны притягиваются к положительному электроду, дырки — к отрицательному, и сначала в месте перехода, а затем и во всем кристалле не остается ни дырок, ни свободных электронов, то есть кристалл перестает проводить ток.
Короче говоря, в таком n-р- кристалле ток течет лишь в одном направлении. Такой n-p- кристалл может выпрямлять переменный ток. Кроме того, его часть n-типа может заменить нить вакуумной трубки, а часть p -типа — пластину, а сам кристалл будет работать как диод. Такое устройство называется диодом на p-n-переходе.
Полупроводниковые аналоги существуют и у триодов. В этом случае кристалл состоит из трех зон: n-типа по бокам и p -типа в середине. Зона p-типа является модулятором. Таким образом, в таком кристалле два перехода — n-p и p-n.
Если подключить один конец кристалла к «минусу», а второй — к «плюсу» батареи, то электроны, отталкиваемые отрицательным электродом, устремятся к зоне p -типа, а электроны, притягиваемые положительным полюсом, будут удаляться от зоны p -типа, и за счет этого начнут двигаться электроны зоны p-типа. То есть электроны будут перемещаться из одного конца кристалла в другой, при этом p-зона будет тормозить их движение. Изменяя заряд зоны p -типа, можно регулировать скорость электронного потока.
Читать дальшеИнтервал:
Закладка: