Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики
- Название:Популярная физика. От архимедова рычага до квантовой механики
- Автор:
- Жанр:
- Издательство:Центрполиграф
- Год:2006
- Город:М.
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание
Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
По этой причине любой процесс, включающий в себя передачу энергии, приводит к возникновению теплоты как стороннего продукта. Тело, находящееся в движении, произведет теплоту в результате трения или сопротивления воздуха, и часть его кинетической энергии будет распространяться по молекулам, с которыми оно вошло в контакт. При преобразовании электрической энергии в свет или движение также производится и теплота, что мы можем легко обнаружить, прикоснувшись к электрической лампочке или электродвигателю.
И наоборот, это означает, что если бы теплота была полностью преобразована в некоторую форму нетепловой энергии, то автоматически это вызвало бы уменьшение энтропии. Но уменьшение энтропии в замкнутой системе настолько чрезвычайно маловероятно, что возможность его возникновения при обычных условиях можно полностью игнорировать. Да, конечно, некоторое количество теплоты может быть преобразовано в другие формы энергии, но только за счет дальнейшего увеличения энтропии теплоты, остающейся в системе. В паровом двигателе, например, преобразование энергии теплоты пара в кинетическую энергию поршней, то есть в часть, уменьшающую энтропию, приводит к ее увеличению за счет (все большего) увеличения энтропии горящего топлива, благодаря которому производится пар.
Увеличивающаяся равномерность в распространении энергии может интерпретироваться как увеличивающийся «беспорядок». «Порядок» мы интерпретируем как качество, характеризующее расположение частей системы: например, распределение вещей по категориям, расположение карточек в алфавитном порядке, занесение предметов в список по мере увеличения их количества. Равномерное распространение предметов должно игнорировать все это дифференцирование. Как результат мы получаем, что специфическая категория объектов равномерно распределяется среди остальных категорий: такое явление мы можем назвать «максимальным беспорядком».
По этой причине, когда мы перемешиваем аккуратно сложенную колоду карт в случайном порядке, мы можем говорить об увеличении энтропии. Да и вообще все процессы, которые непосредственно происходят, кажется (в соответствии со вторым законом термодинамики), вызывают увеличение беспорядка. Если не предпринять специальных усилий, чтобы полностью изменить порядок вещей (что увеличит нашу собственную энтропию), то опрятные комнаты будут иметь тенденцию стать неряшливыми, неубранными, блестящие объекты будут иметь тенденцию стать мутными, пыльными, вещи, которые мы запомнили, будут иметь тенденцию забываться, и так далее.
Таким образом, здесь, в этой книге, мы пришли к достаточно парадоксальной симметрии. Мы начали с греческих философов, сделавших первую попытку установить систематические обобщения, лежащие в основе порядка Вселенной. Они были уверены, что такой порядок, в основном простой и постижимый, существует. В результате развития предложенных ими идей мы действительно обнаружили такие обобщения. И из них наиболее мощные из всех обнаруженных обобщений -первые два закона термодинамики — демонстрируют нам, что порядок во Вселенной прежде всего бесконечно увеличивает беспорядок в ней же.
Часть вторая.
СВЕТ, МАГНЕТИЗМ И ЭЛЕКТРИЧЕСТВО
Глава 1.
МЕХАНИЗМ
Ньютоновское представление
В первом томе этой книги я рассказывал о трех видах энергии: движении (кинетическая энергия), звуке и тепле. Оказалось, что звук и тепло — это в конечном итоге формы кинетической энергии.
В случае звука атомы и молекулы, составляющие воздух или иную среду, в которой звук распространяется, перемещаются туда и обратно упорядоченным образом. Таким образом, волны сжатия и разрежения распространяются с фиксированной скоростью.
Тепло же, с другой стороны, связано с хаотичным движением атомов и молекул, из которых состоит любое вещество. Чем больше средняя скорость такого движения, тем больше интенсивность тепла (см. ч. I).
В середине XIX века шотландский физик Джеймс Клерк Максвелл (1831–1879) и австрийский физик Людвиг Больцман (1844–1906) детально разработали теорию, в которой тепло рассматривалось как хаотичное движение молекул (молекулярно-кинетическая теория).
Тогда еще заманчивее стало предполагать, что все феномены во Вселенной могут быть рассмотрены как основанные на движении.
С этой точки зрения Вселенную можно представить состоящей из огромного числа частиц; каждая частица, перемещаясь, влияет на соседние частицы, с которыми входит в соприкосновение.
Это такой же процесс, какой мы видим, например, в механизме обыкновенных часов. Одна деталь часов воздействует на другую через раскручивающуюся пружину, через движение сцепленных шестеренок, через рычаги; в общем — посредством всех видов физического взаимодействия.
В других машинах подобные взаимосвязи могут состоять из бесконечных ремней, блоков, водяных струй и т. д. В микромире — это атомы и молекулы, которые находятся в движении и воздействуют друг на друга, когда сталкиваются. В космосе — это планеты и звезды, находящиеся в движении и воздействующие друг на друга посредством гравитации.
Все от необъятной Вселенной до ее крошечных частей можно рассматривать как подчиняющееся тем же самым законам механики физического взаимодействия, что и привычные нам машины.
Это философия механизма, или механистическая интерпретация Вселенной. (Гравитационное воздействие, как я вкратце покажу, не совсем попадает под это представление.)
Взаимодействие через движение подчиняется прежде всего трем законам движения (см. ч. I), предложенным Исааком Ньютоном (1642–1727) в 1687 году, и закону всемирного тяготения, предложенному им же. Следовательно, механистический взгляд на Вселенную можно назвать «ньютоновской моделью Вселенной».
Весь первый том книги посвящен ньютоновской модели. Он возвращает нас к середине XIX века, когда этот взгляд преодолел все препятствия и казался торжествующим и непоколебимым.
Вот пример: в первой половине XIX века было обнаружено, что движение Урана по своей орбите не совсем соответствует вычисляемому по ньютоновскому закону всемирного тяготения. Разница между тем положением Урана, которое ожидалось по вычислениям, и тем, которое было на самом деле, была совсем небольшой; однако сам факт этой разницы мог разрушить все ньютоновские построения.
Два молодых астронома, англичанин Джон Кауч Эдамс (1819–1892) и француз Урбен Жан Жозеф Леверье (1811–1877), решили, что теория Ньютона не может быть неверной. Причиной несоответствия наверняка стало существование неизвестной планеты, гравитационное влияние которой на Уран не было учтено.
Независимо друг от друга они просчитали, где должна находиться такая планета, чтобы именно таким образом повлиять на движение Урана, и пришли к одному и тому же выводу. В 1846 году предполагаемая планета была обнаружена. После такой победы кто еще мог сомневаться в пользе ньютоновской картины мира?
Читать дальшеИнтервал:
Закладка: