Фрэнк Вильчек - Тонкая физика. Масса, эфир и объединение всемирных сил
- Название:Тонкая физика. Масса, эфир и объединение всемирных сил
- Автор:
- Жанр:
- Издательство:Питер
- Год:2017
- Город:СПб.
- ISBN:978-5-496-02934-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Фрэнк Вильчек - Тонкая физика. Масса, эфир и объединение всемирных сил краткое содержание
Великолепный рассказ о единстве материи и энергии, об элементарных частицах и их взаимодействиях — в этом шедевре серьезной научно-популярной литературы.
Тонкая физика. Масса, эфир и объединение всемирных сил - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Учитывая этот опыт, мы не должны удивляться, если обнаружим: чтобы добраться до основ, то есть расстояний, на которых может происходить объединение сил, нам может потребоваться передача немыслимых объемов импульса и энергии. Мощнейший ускоритель БАК обеспечит нам в десять раз лучшее разрешение, то есть разрешение с коэффициентом, равным 10 1, при затратах, составляющих около 10 миллиардов евро. Далее все становится сложнее.
Поэтому мы должны использовать свой мозг. Хотя он и не очень надежен, но относительно дешев и всегда под рукой (так сказать). Несколькими росчерками пера мы можем рассчитать эффекты искажения Сетки и внести соответствующие поправки.
Результат показан на рис. 18.2.

Рис. 18.2.Внесение поправок с учетом искажений Сетки с целью проверить, объединяются ли силы. Когда мы выстраиваем объекты так, что обратные связи, возведенные в квадрат, располагаются по вертикали в восходящем порядке и обозначаются более понятным термином — «нисходящая мощность», а по горизонтали располагаются значения логарифма энергии, или (что то же самое) обратного расстояния, скорректированные связи, рассматриваемые со все увеличивающимся разрешением, создают прямые линии. О величине погрешностей эксперимента можно судить по ширине линий. Это почти работает, но не совсем
Как мог бы сказать Гомер Симпсон: «Ой! Это не совсем то, что нужно. Близко, но не сигара».
Что же делать?
Глава 19. Приближение к истине
Когда привлекательная идея является почти правильной, мы пытаемся сделать ее правильной. Мы ищем способы приблизить ее к истине.
Известный философ Карл Поппер подчеркивал важность опровергаемости в науке. Согласно Попперу, признаком научных теорий является то, что они дают утверждения — предположения, которые могут оказаться ложными. Верно ли утверждение Поппера? Можете ли вы его опровергнуть?
Возможно, это глубокая истина. Репоппизм — противоположность попперизма — говорит, что признаком хорошей научной теории является то, что вы можете сделать ее истинной. Такая теория может ошибаться, но если это хорошая теория, то на этих ошибках вы можете основывать дальнейшие построения.
В важном отношении опровергаемость и возможность приближения к истине являются двумя сторонами одной медали. Обе ценят определенность. Худшая теория, с обеих точек зрения, не есть теория, допускающая ошибки. На ошибках вы можете учиться. Худшая теория — это теория, которая даже не пытается ошибаться, теория, которая одинаково готова ко всему. Если все одинаково возможно, то нет ничего особенно интересного.
С точки зрения нашего иезуитского кредо, которое гласит: «Блаженнее просить прощения, чем разрешения» — опровергаемая теория спрашивает разрешения, теория, приближаемая к истине, просит прощения, а ненаучная теория не имеет понятия о грехе.
Идеи распознавания закономерностей и сжатия описаний, которые мы обсуждали ранее, представляют разные точки зрения на эти проблемы (и, я думаю, идут глубже). Если обработка каждого пиксела приводит к среднему оттенку серого, то в результате сырой экспозиции не появится никакого изображения. Аналогичным образом, чтобы распознать закономерности в нашем восприятии физического мира на фоне всего, что можно себе представить, наши кандидаты на звание теории должны отличать возможное от невозможного (в соответствии с теорией). Только в этом случае мы можем их по-разному раскрасить, и только тогда наши наблюдения предоставят нам контрастное изображение, с которым мы можем работать.
Если нам удастся добиться определенности и получить много правильных пикселов, то у нас может сложиться полезный образ даже при наличии нескольких ошибок. (Мы можем отретушировать его с помощью программы Photoshop.) Таким образом, кроме точности мы получаем награду за амбиции, то есть за привнесение в изображение большого количества пикселов (или, пользуясь нашей метафорой, множества фактов).
Достаточно метафор и общностей! Рассмотрим пример приближения к истине.
Повышаем ставки: увеличение степени объединения
Наша смелая попытка объединения сильного, электромагнитного и слабого взаимодействий не вполне сработала. Нам удалось создать теорию, которая оказалась не просто опровергаемой, но и совершенно ложной. Очень научной, по меркам сэра Карла Поппера. Но почему-то мы остались неудовлетворенными.
Когда такая привлекательная и почти успешная идея кажется не совсем правильной, имеет смысл попытаться ее спасти. Мы ищем способы приблизить ее к истине.
Вероятно, в наших стремлениях к объединению мы были недостаточно амбициозны. Суть объединения различных зарядов такова:
электрон ↔ кварк
фотон ↔ глюон (19.1)
Это по-прежнему оставляет строительные блоки мира разделенными на два отдельных класса. Можем ли мы пойти дальше? Можем ли мы сделать это?
электрон ↔ кварк
↕ ↕
фотон ↔ глюон (19.2)
Давайте попробуем.
Глава 20. Объединение требует суперсимметрии
Когда мы расширяем физические уравнения, чтобы включить суперсимметрию, мы обогащаем Сетку. Таким образом, мы должны перекалибровать наши расчеты того, как Сетка искажает наше видение объединения. Благодаря такой коррекции в фокусе появляется резкое изображение.
Совершенствуя наши уравнения, мы расширяем мир.
В 1860-х годах Джеймс Клерк Максвелл вывел уравнения для электричества и магнетизма, как они понимались в то время, и обнаружил, что они ведут к противоречиям [55] Я уже упоминал об этом в главе 8. — Примеч. авт.
. Он видел, что может обеспечить их последовательность путем добавления нового члена слагаемого. Оно, разумеется, соответствует новому физическому эффекту. За несколько лет до Майкла Фарадея в Англии Джозеф Генри в Соединенных Штатах обнаружил, что при изменении во времени магнитные поля создают электрические поля. Новый член в уравнениях Максвелла являлся воплощением обратного эффекта, при котором изменение электрических полей создает магнитные поля. Объединив эти эффекты, мы получаем совершенно новую возможность: изменяющиеся электрические поля создают изменяющиеся магнитные поля, которые создают изменяющиеся электрические поля, которые создают изменяющиеся магнитные поля… Вы можете получить самообновляющееся возмущение, которое живет собственной жизнью. Максвелл видел, что его уравнения имели решения такого рода. Он мог рассчитать скорость, с которой эти возмущения перемещаются в пространстве. И он обнаружил, что они движутся со скоростью света.
Интервал:
Закладка: